Abstract

Pipe joints are weak points in nonmetallic pipeline systems, and their mechanical strength is essential for ensuring safe pipeline operation. By reinforcing with short carbon fiber-reinforced thermoplastic composites (SCFRTCs), the mechanical strength of pipe joints shows great improvement. Understanding the failure mechanisms of SCFRTCs joints is crucial for further structural enhancement and safe operation. In this study, the failure mode of SCFRTCs joints is first investigated through bursting tests. Microstructural analysis using scanning electron microscopy (SEM) and computed tomography (CT) reveals that stress concentration at the SCFRTCs joint initiates cracks formation. The progressive propagation of these cracks, leading to ultimate failure, is identified as the primary failure mechanism. Subsequently, a finite element model of SCFRTCs joints, incorporating contour integration for crack propagation, is constructed, and the energy release rate for crack propagation of SCFRTCs is experimentally determined. Simulation results confirm the stress concentration-induced crack initiation. Furthermore, the effect of joint wall thickness on structural strength of the SCFRTCs joint is analyzed. Increasing wall thickness improves the mechanical strength of SCFRTCs joint. However, most of the SCFRTCs in the joint remain at low stress levels, far from yielding when the crack initiates. As wall thickness increases, the strength utilization rate of SCFRTCs gradually decreases from 49.0% to as low as 14.9%, indicating that increasing wall thickness is not an effective method for enhancing structural strength, particularly under conditions of large wall thickness.

References

1.
Shannon
,
L.
, and
Abel
,
M.
,
2009
, “
Use of HDPE Piping in the Callaway Nuclear Plant Essential Service Water System
,” ASME Paper No. PVP2009-77434.10.1115/PVP2009-77434
2.
Zubail
,
A.
,
Traidia
,
A.
,
Masulli
,
M.
,
Vatopoulos
,
K.
,
Villette
,
T.
, and
Taie
,
I.
,
2021
, “
Carbon and Energy Footprint of Nonmetallic Composite Pipes in Onshore Oil and Gas Flowlines
,”
J. Cleaner Prod.
,
305
, p.
127150
.10.1016/j.jclepro.2021.127150
3.
Manoj Prabhakar
,
M.
,
Rajini
,
N.
,
Ayrilmis
,
N.
,
Mayandi
,
K.
,
Siengchin
,
S.
,
Senthilkumar
,
K.
,
Karthikeyan
,
S.
, and
Ismail
,
S. O.
,
2019
, “
An Overview of Burst, Buckling, Durability and Corrosion Analysis of Lightweight FRP Composite Pipes and Their Applicability
,”
Compos. Struct.
,
230
, p.
111419
.10.1016/j.compstruct.2019.111419
4.
Shi
,
J.
,
Hu
,
A.
,
Yu
,
F.
,
Cui
,
Y.
,
Yang
,
R.
, and
Zheng
,
J.
,
2021
, “
Finite Element Analysis of High-Density Polyethylene Pipe in Pipe Gallery of Nuclear Power Plants
,”
Nucl. Eng. Technol.
,
53
(
3
), pp.
1004
1012
.10.1016/j.net.2020.08.019
5.
Rajabi
,
A.
,
Alinejad
,
J.
,
Fallah
,
K.
, and
Ganji
,
D. D.
,
2019
, “
Optimization of Conjugate Heat Transfer in the Electrofusion Joint Using TAGUCHI Method
,”
Therm. Sci.
,
23
(
5 Part B
), pp.
3047
3057
.10.2298/TSCI171119087R
6.
Rajabi
,
A.
, and
Alinejad
,
J.
,
2019
, “
Simulation of Melting in an Electrofusion Joint Using Lattice Boltzmann Method
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
334
342
.10.2514/1.T5507
7.
Sima
,
M.
, and
Sadegh Tavallali
,
M.
,
2019
, “
Heat Transfer Approximate Modeling, Parameter Estimation and Thermography of Thermal Pulsing in Electrofusion Joints of Gas Pipelines
,”
Infrared Phys. Technol.
,
98
, pp.
354
363
.10.1016/j.infrared.2019.03.002
8.
Ge
,
Z.
,
Yao
,
R.
, and
Shi
,
J.
,
2021
, “
A Comprehensive Review on Failure Analysis of Electrofusion Joint for Plastic Pipes
,” ASME Paper No. PVP2021-62132.10.1115/PVP2021-62132
9.
Sonsino
,
C.
, and
Moosbrugger
,
E.
,
2008
, “
Fatigue Design of Highly Loaded Short-Glass-Fibre Reinforced Polyamide Parts in Engine Compartments
,”
Int. J. Fatigue
,
30
(
7
), pp.
1279
1288
.10.1016/j.ijfatigue.2007.08.017
10.
Casado
,
J. A.
,
Carrascal
,
I.
,
Polanco
,
J. A.
, and
Gutiérrez-Solana
,
F.
,
2006
, “
Fatigue Failure of Short Glass Fibre Reinforced PA 6.6 Structural Pieces for Railway Track Fasteners
,”
Eng. Failure Anal.
,
13
(
2
), pp.
182
197
.10.1016/j.engfailanal.2005.01.016
11.
Bernasconi
,
A.
,
Davoli
,
P.
, and
Armanni
,
C.
,
2010
, “
Fatigue Strength of a Clutch Pedal Made of Reprocessed Short Glass Fibre Reinforced Polyamide
,”
Int. J. Fatigue
,
32
(
1
), pp.
100
107
.10.1016/j.ijfatigue.2009.02.001
12.
Jumahat
,
A.
,
Haris
,
N. A.
, and
Mohamad
,
F. N. C.
,
2019
, “
Slurry Pot Erosion Wear of Nanoclay Modified Short Fiber Reinforced Polymer (SFRP) Composites
,”
Int. J. Eng. Adv. Technol.
,
9
(
1
), pp.
5832
5838
.10.35940/ijeat.A3013.109119
13.
Celentano
,
D.
,
Wimmer
,
D.
,
Colabella
,
L.
, and
Cisilino
,
A. P.
,
2015
, “
Viscoelastic Mechanical Characterization of a Short-Fiber Reinforced Polyethylene Tube: Experiments and Modelling
,”
Int. J. Pressure Vessels Piping
,
134
, pp.
82
91
.10.1016/j.ijpvp.2015.08.007
14.
Aparna
,
S.
,
Purnima
,
D.
, and
Adusumalli
,
R. B.
,
2020
, “
Effect of Short Carbon Fiber Content and Water Absorption on Tensile and Impact Properties of PA6/PP Blend Based Composites
,”
Polym. Compos.
,
41
(
12
), pp.
5167
5181
.10.1002/pc.25784
15.
Capela
,
C.
,
Oliveira
,
S. E.
, and
Ferreira
,
J. A. M.
,
2019
, “
Fatigue Behavior of Short Carbon Fiber Reinforced Epoxy Composites
,”
Composites, Part B
,
164
, pp.
191
197
.10.1016/j.compositesb.2018.11.035
16.
Doddalli
,
R. S.
, and
Yellampalli
,
S. V.
,
2020
, “
Significance of the Type of Reinforcement on the Physic Mechanical Behavior of Short Glass Fiber and Short Carbon Fiber‐Reinforced Polypropylene Composites
,”
Eng. Rep.
,
2
(
2
), p.
e12098
.10.1002/eng2.12098
17.
Fu
,
S.
,
Mai
,
Y.
,
Lauke
,
B.
, and
Yue
,
C.
,
2002
, “
Synergistic Effect on the Fracture Toughness of Hybrid Short Glass Fiber and Short Carbon Fiber Reinforced Polypropylene Composites
,”
Mater. Sci. Eng.
,
323
(
1–2
), pp.
326
335
.10.1016/S0921-5093(01)01383-1
18.
Yao
,
R.
,
Ge
,
Z.
,
Wang
,
D.
,
Shang
,
N.
, and
Shi
,
J.
,
2024
, “
Self-Sensing Joints for in-Situ Structural Health Monitoring of Composite Pipes: A Piezoresistive Behavior-Based Method
,”
Eng. Struct.
,
308
, p.
118049
.10.1016/j.engstruct.2024.118049
19.
Chung
,
D. D. L.
,
2020
, “
A Critical Review of Piezoresistivity and Its Application in Electricalresistance-Based Strain Sensing
,”
J Mater. Sci.
,
55
(
32
), pp.
15367
15396
.10.1007/s10853-020-05099-z
20.
Irfan
,
M. S.
,
Khan
,
T.
,
Hussain
,
T.
,
Liao
,
K.
, and
Umer
,
R.
,
2021
, “
Carbon Coated Piezoresistive Fiber Sensors: From Process Monitoring to Structural Health Monitoring of Composites - A Review
,”
Composites, Part A
,
141
, p.
106236
.10.1016/j.compositesa.2020.106236
21.
Han
,
J.
,
Pan
,
J.
,
Ma
,
X.
, and
Cai
,
J.
,
2022
, “
Sensing Performance of Engineered Cementitious Composites in Different Application Forms
,”
Constr. Build. Mater.
,
355
, p.
129223
.10.1016/j.conbuildmat.2022.129223
22.
Shi
,
J.
,
Yao
,
R.
,
Kong
,
Z.
,
Ni
,
F.
, and
Zheng
,
J.
,
2021
, “
Strength Analysis on Hybrid Welding Interface of Polymer and Short Carbon Fiber Reinforced Composite
,”
J. Mater. Sci.
,
56
(
26
), pp.
14556
14569
.10.1007/s10853-021-06207-3
23.
Yao
,
R.
,
Liu
,
X.
,
Jiang
,
W.
,
Shang
,
N.
,
Zheng
,
J.
,
Drechsler
,
K.
, and
Shi
,
J.
,
2023
, “
Simulation Studies Underlying the Influence of Filler Orientation on the Electrical Properties of Short Carbon Fiber Conductive Polymer Composites: Implications for Electrical Conductivity Regulation of Micro/Nanocomposites
,”
ACS Appl. Nano Mater.
,
6
(
11
), pp.
9757
9767
.10.1021/acsanm.3c01450
24.
Nie
,
X.
,
Hu
,
A.
,
Yao
,
D.
, and
Shi
,
J.
,
2019
, “
Study on Failure Mode and Burst Pressure of Electrofusion Joints of Polyethylene and Its Composite Pipes
,”
China Plast.
,
33
, pp.
63
68
.10.19491/j.issn.1001-9278.2019.06.011
25.
Zheng
,
J.
,
Shi
,
J.
, and
Guo
,
W.
,
2012
, “
Development of Nondestructive Test and Safety Assessment of Electrofusion Joints for Connecting Polyethylene Pipes
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021406
.10.1115/1.4004869
26.
Lubkin
,
J. L.
, and
Reissner
,
E.
,
1956
, “
Stress Distribution and Design Data for Adhesive Lap Joints Between Circular Tubes
,”
Trans. ASME
,
78
(
6
), pp.
1213
1221
.10.1115/1.4013993
27.
Hu
,
A.
,
Nie
,
X.
,
Yao
,
D.
,
Chen
,
X.
,
Zheng
,
J.
, and
Shi
,
J.
,
2019
, “
Stress Analysis of Fusion Zone of Electrofusion Joint of Polyethylene Gas Pipeline
,”
Pressure Vessels Technol.
,
36
, pp.
21
28
.10.3969/j.issn.1001-4837.2019.05.004
28.
Zhang
,
Y.
,
Luo
,
X.
, and
Shi
,
J.
,
2018
, “
Viscoelastic and Damage Model of Polyethylene Pipe Material for Slow Crack Growth Analysis
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031406
.10.1115/1.4039699
29.
Fabrizio
,
S.
,
Jacopo
,
T.
,
Claudia
,
S.
,
Maria
,
C. S.
,
Luca
,
C.
, and
Nina
,
G.
,
2018
, “
Effect of Basalt Fibre Hybridisation and Sizing Removal on Mechanical and Thermal Properties of Hemp Fibre Reinforced HDPE Composites
,”
Compos. Struct.
,
188
, pp.
394
406
.10.1016/j.compstruct.2018.01.046
30.
ASTM D1238
,
2013
, “
Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer
,”
American Society for Testing and Materials
,
West Conshohocken, PA
.https://www.astm.org/d1238-10.html
31.
ASTM D638
,
2022
, “
Standard Test Method for Tensile Properties of Plastics
,”
American Society for Testing and Materials
,
West Conshohocken, PA
.https://www.astm.org/d0638-14.html
32.
ASTM D1599
,
2024
, “
Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings
,”
American Society for Testing and Materials
,
West Conshohocken, PA
.https://www.astm.org/d1599-18.html
You do not currently have access to this content.