Abstract

Machine learning (ML) techniques have recently gained great attention across a multitude of engineering domains, including pipeline materials. However, their application to tensile strain capacity (TSC) modeling remains unexplored. To bridge this gap, this study developed and evaluated an ML model to predict the tensile strain capacity of girth-welded pipelines. The model was trained on over 20,000 data points derived from a TSC equation available in the literature. The ML model demonstrated robust performance in predicting tensile strain capacities. Evidence of this lies in the near-zero means, minimal standard deviations, and normal distribution of residuals for both the training and test datasets. These collectively suggest that the model provides a good fit for the data. Furthermore, the model's loss behavior indicates successful convergence and generalization, without signs of overfitting or underfitting. An analysis using the random forest method revealed that the geometry of the flaw, specifically the flaw depth, is the most influential variable in predicting the TSC. This could be attributed to its significant impact on the fracture toughness of materials. In contrast, material properties and fracture toughness exert less influence relatively, despite their contributions to the model. This finding underscores the importance of flaw geometry in TSC prediction models. Overall, the development of a data-driven TSC model has shown efficient TSC modeling. This model leverages ML techniques, allowing for continuous updates with new data via deep learning.

References

1.
Zhang
,
Z.
,
Liu
,
Y.
,
Deng
,
L.
,
Zhang
,
D.
,
Fu
,
Y.
, and
Wang
,
H.
,
2023
, “
Comparison of Tensile Strain Capacity Models of Oil and Gas Pipelines
,”
J. Phys.: Conf. Ser.
,
2660
(
1
), p.
012002
.10.1088/1742-6596/2660/1/012002
2.
Wang
,
J.
,
Shuai
,
Y.
,
He
,
R.
,
Dou
,
X.
,
Zhang
,
P.
, and
Feng
,
C.
,
2021
, “
Ultimate Strain Capacity Assessment of Local Buckling of Pipelines With Kinked Dents Subjected to Bending Loads
,”
Thin-Walled Struct.
,
169
, p.
108369
.10.1016/j.tws.2021.108369
3.
Jang
,
Y.-Y.
,
Kang
,
J.-Y.
,
Huh
,
N.-S.
,
Kim
,
I.-J.
,
Kim
,
C.-M.
, and
Kim
,
Y.-P.
,
2019
, “
Predictions of Tensile Strain Capacity for Strain-Based Pipelines With a Circumferential and Internal Surface Flaw
,”
ASME
Paper No. OMAE2019-96480.10.1115/OMAE2019-96480
4.
Yang
,
Z.
,
Kumar
,
S.
, and
Tronskar
,
J. P.
,
2008
, “
Influence of Localized Geometric Imperfections i.e. Buckles and Wrinkles on the Integrity of Pipelines
,”
ASME
Paper No. OMAE2008-57066.10.1115/OMAE2008-57066
5.
Cakiroglu
,
C.
,
Duke
,
K.
,
El-Rich
,
M.
,
Adeeb
,
S.
,
Cheng
,
J. J. R.
, and
Sen
,
M.
,
2012
, “
Influence of Girth Weld Flaw and Pipe Parameters on the Critical Longitudinal Strain of Steel Pipes
,”
ASME
Paper No. IPC2012-90736.10.1115/IPC2012-90736
6.
Liu
,
B.
,
Liu
,
X. J.
, and
Zhang
,
H.
,
2008
, “
Tensile Strain Capacity of Pipelines for Strain-Based Design
,”
ASME
Paper No. IPC2008-64031.10.1115/IPC2008-64031
7.
Lu
,
J.
,
Fathi
,
A.
,
Yoosef-Ghodsi
,
N.
,
Tetteh-Wayoe
,
D.
, and
Hill
,
M.
,
2020
, “
A Case Study of Predicting Tensile Strain Capacity of In-Service Pipelines
,”
ASME
Paper No. IPC2020-9310.10.1115/IPC2020-9310
8.
Hertelé
,
S.
,
De Waele
,
W.
,
Denys
,
R.
, and
Verstraete
,
M.
,
2013
, “
Sensitivity of Plastic Response of Defective Pipeline Girth Welds to the Stress-Strain Behavior of Base and Weld Metal
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
1
), p.
011402
.10.1115/1.4007049
9.
Yang
,
Y.
,
Zhang
,
H.
,
Wu
,
K.
,
Chen
,
P.
,
Sui
,
Y.
,
Yang
,
D.
, and
Liu
,
X.
,
2021
, “
Strain Capacity Analysis of the Mismatched Welding Joint With Misalignments of D 1,422 Mm X80 Steel Pipelines: An Experimental and Numerical Investigation
,”
J. Pipeline Sci. Eng.
,
1
(
2
), pp.
212
224
.10.1016/j.jpse.2021.05.002
10.
Hertelé
,
S.
,
Denys
,
R.
,
Van Minnebruggen
,
K.
,
Verstraete
,
M.
, and
De Waele
,
W.
,
2013
, “
Combined Numerical-Experimental Framework for Strain Based Design and Flaw Assessment of Girth Welds
,”
Int. J. Sustainable Constr. Des.
,
4
(
1
).10.21825/scad.v4i1.743
11.
Wang
,
Y.-Y.
,
Liu
,
M.
,
Song
,
Y.
, and
Horsley
,
D.
,
2012
, “
Tensile Strain Models for Strain-Based Design of Pipelines
,”
ASME
Paper No. OMAE2012-84241.10.1115/OMAE2012-84241
12.
Wang
,
Y. Y.
,
Liu
,
M.
,
Song
,
Y.
,
Stephens
,
M.
,
Petersen
,
R.
, and
Gordon
,
R.
,
2011
, “
Second Generation Models for Strain-Based Design
,” Pipeline and Hazardous Materials Safety Administration (PHMSA), U.S. Department of Transportation, Washington, DC, Report No.
DTPH56-06-T000014
.https://rosap.ntl.bts.gov/view/dot/34533
13.
Wu
,
G.
, and
Wang
,
L.
,
2018
, “
An Overview of Strain-Based Fracture Assessment of Pipelines
,”
ASME
Paper No. OMAE2018-78685.10.1115/OMAE2018-78685
14.
Kibey
,
S.
,
Wang
,
X.
,
Minnaar
,
K.
,
Macia
,
M. L.
,
Fairchild
,
D. P.
,
Kan
,
W. C.
,
Ford
,
S. J.
, and
Newbury
,
B.
,
2010
, “
Tensile Strain Capacity Equations for Strain-Based Design of Welded Pipelines
,”
ASME
Paper No. IPC2010-31661.10.1115/IPC2010-31661
15.
Hertelé
,
S.
,
De Waele
,
W.
,
Denys
,
R.
,
Verstraete
,
M.
,
Van Minnebruggen
,
K.
, and
Horn
,
A.
,
2013
, “
Weld Strength Mismatch in Strain Based Flaw Assessment: Which Definition to Use?
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061402
.10.1115/1.4025343
16.
Kim
,
T.
,
Kim
,
K.
,
Kim
,
J.
,
Kim
,
J.
, and
Koo
,
J.
,
2023
, “
Implementation of Machine Learning Techniques for Prediction of the Corrosion Depth for Water Pipelines
,”
Pipelines 2023: Condition Assessment, Utility Engineering, Surveying, and Multidiscipline - Proceedings of Sessions of the Pipelines 2023 Conference
, San Antonio, TX, Aug. 12–16, pp.
139
148
.10.1061/9780784485033.016
17.
Xie
,
J.
,
Zhang
,
L.
,
Zheng
,
Q.
,
Liu
,
X.
,
Dubljevic
,
S.
, and
Zhang
,
H.
,
2021
, “
Strain Demand Prediction of Buried Steel Pipeline at Strike-Slip Fault Crossings: A Surrogate Model Approach
,”
Earthquake Struct.
,
20
(
1
), pp.
109
122
.10.12989/eas.2021.20.1.109
18.
Zhu
,
J. B.
,
Zhu
,
X. K.
, and
Zhang
,
W.
,
2021
, “
Machine Learning Modeling of Dynamic Strength of Resistance Spot Welds in High Strength Steels
,”
ASME
Paper No. PVP2021-63093.10.1115/PVP2021-63093
19.
Zhu
,
X. K.
,
Johnson
,
W. R.
,
Sindelar
,
R.
, and
Wiersma
,
B.
,
2022
, “
Machine Learning Models of Burst Strength for Defect-Free Pipelines
,”
ASME
Paper No. PVP2022-84908.10.1115/PVP2022-84908
20.
Zhu
,
X. K.
,
Zhu
,
J. B.
, and
Duncan
,
A. J.
,
2023
, “
Data-Driven Stress Intensity Factor Solutions for Axial Outside Surface Cracks in Thin-Walled Cylinders
,”
ASME
Paper No. PVP2022-86164.10.1115/PVP2022-86164
21.
Johnson
,
W. R.
,
Zhu
,
X. K.
,
Sindelar
,
R.
, and
Wiersma
,
B.
,
2023
, “
Artificial Neural Networks for Predicting Burst Strength of Thick and Thin-Walled Pressure Vessels
,”
ASME
Paper No. PVP2023-106471.10.1115/PVP2023-106471
22.
Sun
,
X.
,
Liu
,
Z.
,
Wang
,
X.
, and
Chen
,
X.
,
2022
, “
Determination of Ductile Fracture Properties of 16MND5 Steels Under Varying Constraint Levels Using Machine Learning Methods
,”
Int. J. Mech. Sci.
,
224
, p.
107331
.10.1016/j.ijmecsci.2022.107331
23.
Li
,
S.
,
Gong
,
B.
,
Dai
,
L.
,
Deng
,
C.
, and
Di
,
X.
,
2024
, “
Data-Driven Probabilistic Failure Assessment Curve Based on Similitude Principle
,”
Int. J. Solids Struct.
,
295
, p.
112819
.10.1016/j.ijsolstr.2024.112819
24.
Fukushima
,
K.
,
1975
, “
Cognitron: A Self-Organizing Multilayered Neural Network
,”
Biol. Cybern.
,
20
(
3–4
), pp.
121
136
.10.1007/BF00342633
25.
Dauphin
,
Y. N.
,
Pascanu
,
R.
,
Gulcehre
,
C.
,
Cho
,
K.
,
Ganguli
,
S.
, and
Bengio
,
Y.
,
2014
, “Identifying and Attacking the Saddle Point Problem in High-Dimensional Non-Convex Optimization,”
Proceedings of the 27th International Conference on Neural Information Processing Systems
,
Montreal, QC, Canada
, Dec. 8–13, pp.
2933
2941
.https://ganguligang.stanford.edu/pdf/14.SaddlePoint.NIPS.pdf
26.
Geron
,
A.
,
2022
,
Hands-on Machine Learning With Scikit-Learn, Keras, and TensorFlow
,
O'Reilly Media, Inc
,
Sebastopol, CA
.
27.
CSA
,
2019
, “
CSA Z662:19 Oil and Gas Pipeline Systems
,” Canadian Standards Association, Toronto, ON, Canada, Standard No. CSA Z662.
28.
Abdulhameed
,
D.
,
Cakiroglu
,
C.
,
Lin
,
M.
,
Cheng
,
R.
,
Nychka
,
J.
,
Sen
,
M.
, and
Adeeb
,
S.
,
2016
, “
The Effect of Internal Pressure on the Tensile Strain Capacity of X52 Pipelines With Circumferential Flaws
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
061701
.10.1115/1.4033436
29.
Wang
,
Y. Y.
,
Cheng
,
W.
,
McLamb
,
M.
,
Horsley
,
D. J.
,
Zhou
,
J.
, and
Glover
,
A.
,
2004
, “
Tensile Strain Limits of Girth Welds With Surface-Breaking Defects, Part 1 - An Analytical Framework
,”
Proceedings of the 4th International Conference on Pipeline Technology
, Ostend, Belgium, May 9–13, pp.
235
249
.
30.
Park
,
D. Y.
,
Gravel
,
J. P.
,
Simha
,
C. H. M.
,
Liang
,
J.
, and
Duan
,
D. M.
,
2016
, “
Low-Constraint Toughness Testing of Two Single-Edge Notched Tension Methods in a Single Specimen
,”
ASME J. Pressure Vessel Technol.,
,
138
(
5
), p.
051401
.10.1115/1.4032998
31.
Park
,
D. Y.
,
Gravel
,
J. P.
,
Arafin
,
M.
,
Liang
,
J.
, and
Simha
,
C. H. M.
,
2015
, “
Evaluation of Two Low-Constraint Toughness Test Methods in a Single Specimen
,”
ASME J. Eng. Mater. Technol.
,
137
(
1
), p.
011003
.10.1115/1.4028728
32.
Park
,
D.-Y.
, and
Gianetto
,
J. A.
,
2019
, “
Review of Tensile Strain Capacity Prediction Models for Strain-Based Design of Pipelines
,”
ASME
Paper No. PVP2019-93220.10.1115/PVP2019-93220
33.
Kariri
,
E.
,
Louati
,
H.
,
Louati
,
A.
, and
Masmoudi
,
F.
,
2023
, “
Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach
,”
Appl. Sci.
,
13
(
5
), p.
3186
.10.3390/app13053186
34.
Mijwil
,
M.
,
2021
, “
Artificial Neural Networks Advantages and Disadvantages
,”
Mesopotamian J. Big Data
,
2021
, pp.
29
31
.10.58496/MJBD/2021/006
35.
Van Rossum
,
G.
, and
Drake
,
F. L.
,
2009
,
Python 3 Reference Manual
,
CreateSpace
,
Scotts Valley, CA
.
36.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
37.
Chollet
,
F.
,
2015
, “
Keras
,” GitHub, accessed Oct. 15, 2024, https://github.com/fchollet/keras
38.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/v12/pedregosa11a.html
39.
McKinney
,
W.
,
2010
, “
Data Structures for Statistical Computing in Python
,”
Proceedings of the 9th Python in Science Conference
,
Austin, TX
, June 28–July 3, pp.
56
61
.10.25080/Majora-92bf1922-00a
40.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.10.1109/MCSE.2007.55
41.
Waskom
,
M.
,
2021
, “
Seaborn: Statistical Data Visualization
,”
J. Open Source Software
,
6
(
60
), p.
3021
.10.21105/joss.03021
42.
Johnsen
,
P. V.
,
Strümke
,
I.
,
Langaas
,
M.
,
DeWan
,
A. T.
, and
Riemer-Sørensen
,
S.
,
2023
, “
Inferring Feature Importance With Uncertainties With Application to Large Genotype Data
,”
PLoS Comput. Biol.
,
19
(
3
), p.
e1010963
.10.1371/journal.pcbi.1010963
43.
Cappelli
,
F.
, and
Grimaldi
,
S.
,
2023
, “
Feature Importance Measures for Hydrological Applications: Insights From a Virtual Experiment
,”
Stochastic Environ. Res. Risk Assess.
,
37
(
12
), pp.
4921
4939
.10.1007/s00477-023-02545-7
44.
Saarela
,
M.
, and
Jauhiainen
,
S.
,
2021
, “
Comparison of Feature Importance Measures as Explanations for Classification Models
,”
SN Appl. Sci.
,
3
(
2
), p.
272
.10.1007/s42452-021-04148-9
45.
Park
,
D.-Y.
,
Tyson
,
W. R.
,
Gianetto
,
J. A.
,
Shen
,
G.
, and
Eagleson
,
R. S.
,
2012
, “
Fracture Toughness of X100 Pipe Girth Welds Using SE(T) and SE(B) Tests
,”
ASME
Paper No. IPC2012-90289.10.1115/IPC2012-90289
46.
Park
,
D. Y.
,
Gravel
,
J. P.
,
Simha
,
C. H. M.
,
Liang
,
J.
, and
Duan
,
D. M.
,
2014
, “
Fracture Toughness of X70 Pipe Girth Welds Using Clamped SE(T) and SE(B) Single-Specimens
,”
ASME
Paper No. IPC2014-33233.10.1115/IPC2014-33233
47.
Hassija
,
V.
,
Chamola
,
V.
,
Mahapatra
,
A.
,
Singal
,
A.
,
Goel
,
D.
,
Huang
,
K.
,
Scardapane
,
S.
,
Spinelli
,
I.
,
Mahmud
,
M.
, and
Hussain
,
A.
,
2024
, “
Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
,”
Cognit. Comput.
,
16
(
1
), pp.
45
74
.10.1007/s12559-023-10179-8
48.
Ruiz-Gonzalez
,
R.
,
Gomez-Gil
,
J.
,
Gomez-Gil
,
F. J.
, and
Martínez-Martínez
,
V.
,
2014
, “
An SVM-Based Classifier for Estimating the State of Various Rotating Components in Agro-Industrial Machinery With a Vibration Signal Acquired From a Single Point on the Machine Chassis
,”
Sensors
,
14
(
11
), pp.
20713
20735
.10.3390/s141120713
You do not currently have access to this content.