Abstract

As a key equipment for oil and gas extraction, the fracture pump is prone to failure due to fatigue crack in the crossbore of valve body. First, under acid fracture fluid and different loading frequencies, the fatigue crack growth rate of 17-4PH stainless steel was obtained by test, and the test data were used the modified Paris law. Then it is applied to numerical simulations to research the fatigue crack growth behavior of the valve body. The results show that the higher the loading frequency in the fracture fluid, the lower the fatigue crack growth rate, which is consistent with the test results. The influence of the working pressure on the stress intensity factor of the crack front is greater than that of the plunger stroke times. The model accurately predicts the fatigue crack orientation and corrosion fatigue crack growth life of the valve body.

Corrosion fatigue crack growth rate at different frequencies (not logarithmic scales)

Corrosion fatigue crack growth rate at different frequencies (not logarithmic scales)

Close modal

References

1.
Lu
,
C.
,
Li
,
M.
,
Qiu
,
L.
,
Shen
,
R.
,
Zeng
,
F.
, and
Cheng
,
X.
, “
Finite Element Analysis and Structural Design of Fracturing Pump Valve Chamber Under Multiple Working Conditions Finite Element Analysis and Structural Design of Fracturing Pump Valve Chamber Under Multiple Working Conditions
,”
J. Phys. Conf. Ser.
,
2228
(
1
), p.
012010
.10.1088/1742-6596/2228/1/012010
2.
Hu
,
G.
,
Deng
,
S.
,
Wang
,
G.
,
Wang
,
M.
, and
Xie
,
M.
,
2022
, “
Corrosion Crack's Propagation Analysis and Fatigue Life Prediction of the Cylinder of 6000HP Hydraulic Fracturing Pump
,”
Eng. Failure Anal.
,
141
(
July
), p.
106652
.10.1016/j.engfailanal.2022.106652
3.
Wang
,
G. R.
,
Chen
,
L. Y.
,
Zhao
,
M.
,
Li
,
R.
, and
Huang
,
B. S.
,
2014
, “
The Research on Failure Analysis of Fluid Cylinder and Fatigue Life Prediction
,”
Eng. Failure Anal.
,
40
, pp.
48
57
.10.1016/j.engfailanal.2014.01.007
4.
Si
,
Z.
, and
Sizhu
,
Z.
,
2018
, “
Research on Stress Intensity Factor of Crack at Intersection of Crossbores
,”
Adv. Mech. Eng.
,
10
(
4
), p.
1687814018772390
.10.1177/1687814018772390
5.
Badr
,
E. A.
,
2006
, “
Stress Concentration Factors for Pressurized Elliptic Crossbores in Blocks
,”
Int. J. Pressure Vessels Piping
,
83
(
6
), pp.
442
446
.10.1016/j.ijpvp.2006.01.003
6.
Wang
,
T.
,
Wang
,
G.
,
Dai
,
L.
,
Chen
,
L.
,
Qiu
,
S.
, and
Li
,
R.
,
2021
, “
Motion Mechanism Study on the Valve Disc of an Ultra-High Pressure Reciprocating Pump
,”
Mech. Syst. Signal Process.
,
160
, p.
107942
.10.1016/j.ymssp.2021.107942
7.
Kiani
,
M.
,
Ishak
,
J.
,
Walker
,
R.
, and
Babaeidarabad
,
S.
,
2018
, “
Numerical Modeling and Experimental Investigation of M-4330 Low Alloy and 17–4 PH Stainless Steels Low Cycle Fatigue Behavior
,”
Exp. Tech.
,
42
(
1
), pp.
93
104
.10.1007/s40799-017-0224-z
8.
Zhang
,
S.
,
Zhou
,
S.
, and
Li
,
M.
,
2020
, “
Research on Fatigue Crack Propagation Process of Fracturing Pumphead
,”
Eng. Failure Anal.
,
116
(
December 2018
), p.
104726
.10.1016/j.engfailanal.2020.104726
9.
Wei
,
Y.
,
Li
,
Y.
,
Lai
,
J.
,
Zhao
,
Q.
,
Yang
,
L.
,
Lin
,
Q.
,
Wang
,
X.
,
Pan
,
Z.
, and
Lin
,
Z.
,
2020
, “
Analysis on Corrosion Fatigue Cracking Mechanism of 17-4PH Blade of Low Pressure Rotor of Steam Turbine
,”
Eng. Failure Anal.
,
118
(
March
), p.
104925
.10.1016/j.engfailanal.2020.104925
10.
Fu
,
J. D.
,
Wan
,
S.
,
Yang
,
Y.
,
Su
,
Q.
,
Han
,
W. W.
, and
Zhu
,
Y. B.
,
2021
, “
Accelerated Corrosion Behavior of Weathering Steel Q345qDNH for Bridge in Industrial Atmosphere
,”
Constr. Build. Mater.
,
306
(
January
), p.
124864
.10.1016/j.conbuildmat.2021.124864
11.
Liu
,
M.
,
Luo
,
S.
,
Shen
,
Y.
, and
Lin
,
X.
,
2019
, “
Corrosion Fatigue Crack Propagation Behavior of S135 High–Strength Drill Pipe Steel in H 2 S Environment
,”
Eng. Failure Anal.
,
97
(
November 2018
), pp.
493
505
.10.1016/j.engfailanal.2019.01.026
12.
Duan
,
Q. Y.
,
Li
,
J. Q.
,
Li
,
Y. Y.
,
Yin
,
Y. J.
,
Xie
,
H. M.
, and
He
,
W.
,
2020
, “
A Novel Parameter to Evaluate Fatigue Crack Closure: Crack Opening Ratio
,”
Int. J. Fatigue
,
141
(
July
), p.
105859
.10.1016/j.ijfatigue.2020.105859
13.
Borges
,
M. F.
,
Neto
,
D. M.
, and
Antunes
,
F. V.
,
2020
, “
Numerical Simulation of Fatigue Crack Growth Based on Accumulated Plastic Strain
,”
Theor. Appl. Fract. Mech.
,
108
(
May
), p.
102676
.10.1016/j.tafmec.2020.102676
14.
Schütz
,
W.
,
1996
, “
A History of Fatigue
,”
Eng. Fract. Mech.
,
54
(
2
), pp.
263
300
.10.1016/0013-7944(95)00178-6
15.
Correia
,
J. A. F. O.
,
Blasón
,
S.
,
Arcari
,
A.
,
Calvente
,
M.
,
Apetre
,
N.
,
Moreira
,
P. M. G. P.
,
De JeSus
,
A. M. P.
, and
Canteli
,
A. F.
,
2016
, “
Modified CCS Fatigue Crack Growth Model for the AA2019-T851 Based on Plasticity-Induced Crack-Closure
,”
Theor. Appl. Fract. Mech.
,
85
, pp.
26
36
.10.1016/j.tafmec.2016.08.024
16.
Chudnovsky
,
A.
,
2014
, “
Slow Crack Growth, Its Modeling and Crack-Layer Approach: A Review
,”
Int. J. Eng. Sci.
,
83
, pp.
6
41
.10.1016/j.ijengsci.2014.05.015
17.
Maierhofer
,
J.
,
Pippan
,
R.
, and
Gänser
,
H. P.
,
2014
, “
Modified NASGRO Equation for Physically Short Cracks
,”
Int. J. Fatigue
,
59
, pp.
200
207
.10.1016/j.ijfatigue.2013.08.019
18.
Forman
,
R. G.
,
Kearney
,
V. E.
, and
Engle
,
R. M.
,
1967
, “
Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures
,”
ASME J. Fluids Eng. Trans.
,
89
(
3
), pp.
459
463
.10.1115/1.3609637
19.
Landes
,
J. D.
, and
Wei
,
R. P.
,
1969
, “
Correlation Between Sustained-Load and Fatigue Crack Growth in High-Strength Steels
,”
Mater. Res. Stand.
,
9
, pp.
25
27
.https://ntrs.nasa.gov/citations/19700036428
20.
Menan
,
F.
, and
Henaff
,
G.
,
2009
, “
Influence of Frequency and Waveform on Corrosion Fatigue Crack Propagation in the 2024-T351 Aluminium Alloy in the S-L Orientation
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
70
76
.10.1016/j.msea.2009.04.058
21.
Mikheevskiy
,
S.
,
Glinka
,
G.
, and
Lee
,
E.
,
2013
, “
Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1301
1310
.10.1007/s11661-012-1577-7
22.
Chan
,
C. W.
,
2017
, “
A Study on the Corrosion Fatigue Behaviour of Laser-Welded Shape Memory NiTi Wires in a Simulated Body Fluid
,”
Surf. Coat. Technol.
,
320
, pp.
574
578
.10.1016/j.surfcoat.2016.10.094
23.
Lu
,
W.
,
Ma
,
C.
,
Gou
,
G.
,
Fu
,
Z.
,
Sun
,
W.
,
Che
,
X.
,
Chen
,
H.
, and
Gao
,
W.
,
2021
, “
Corrosion Fatigue Crack Propagation Behavior of A7N01P-T4 Aluminum Alloy Welded Joints From High-Speed Train Underframe After 1.8 Million Km Operation
,”
Mater. Corros.
,
72
(
5
), pp.
879
887
.10.1002/maco.202012123
24.
Austen
,
I. M.
, and
McIntyre
,
P.
,
1979
, “
Corrosion Fatigue of High-Strength Steel in Low-Pressure Hydrogen Gas
,”
Met. Sci.
,
13
(
7
), pp.
420
428
.10.1179/msc.1979.13.7.420
25.
Amaro
,
R. L.
,
Rustagi
,
N.
,
Findley
,
K. O.
,
Drexler
,
E. S.
, and
Slifka
,
A. J.
,
2014
, “
Modeling the Fatigue Crack Growth of X100 Pipeline Steel in Gaseous Hydrogen
,”
Int. J. Fatigue
,
59
, pp.
262
271
.10.1016/j.ijfatigue.2013.08.010
26.
Igwemezie
,
V.
,
Dirisu
,
P.
, and
Mehmanparast
,
A.
,
2019
, “
Critical Assessment of the Fatigue Crack Growth Rate Sensitivity to Material Microstructure in Ferrite-Pearlite Steels in Air and Marine Environment
,”
Mater. Sci. Eng. A
,
754
(
February
), pp.
750
765
.10.1016/j.msea.2019.03.093
27.
Igwemezie
,
V.
, and
Mehmanparast
,
A.
,
2020
, “
Waveform and Frequency Effects on Corrosion-Fatigue Crack Growth Behaviour in Modern Marine Steels
,”
Int. J. Fatigue
,
134
(
January
), p.
105484
.10.1016/j.ijfatigue.2020.105484
28.
Atkinson
,
J. D.
, and
Lindley
,
T. C.
,
1979
, “
Effect of Stress Waveform and Hold-Time on Environmentally Assisted Fatigue Crack Propagation in C–Mn Structural Steel
,”
Met. Sci.
,
13
(
7
), pp.
444
448
.10.1179/msc.1979.13.7.444
29.
Thorpe
,
T. W.
,
Scott
,
P. M.
,
Rance
,
A.
, and
Silvester
,
D.
,
1983
, “
Corrosion Fatigue of BS 4360:50D Structural Steel in Seawater
,”
Int. J. Fatigue
,
5
(
3
), pp.
123
133
.10.1016/0142-1123(83)90025-7
30.
Bhuyan
,
G. S.
,
Swamidas
,
A. S. J.
, and
Vosikovsky
,
O.
,
1988
, “
Influence of Environmental and Mechanical Variables on Fatigue Crack Growth Rates in CSA G40.21M 350 WT Steel
,”
Int. J. Fatigue
,
10
(
1
), pp.
37
42
.10.1016/0142-1123(88)90020-5
31.
GB/T6398-2017, 2017,
Test Method for Fatigue Crack Growth Rate in Metal Materials[S]
,” Standards Press of China, Beijing, China.
32.
Thuy
,
M.
,
Pedragosa-Rincón
,
M.
,
Niebergall
,
U.
,
Oehler
,
H.
,
Alig
,
I.
, and
Böhning
,
M.
,
2022
, “
Environmental Stress Cracking of High-Density Polyethylene Applying Linear Elastic Fracture Mechanics
,”
Polymers
,
14
(
12
), p.
2415
.10.3390/polym14122415
33.
Adedipe
,
O.
,
Brennan
,
F.
, and
Kolios
,
A.
,
2015
, “
Corrosion Fatigue Load Frequency Sensitivity Analysis
,”
Mar. Struct.
,
42
, pp.
115
136
.10.1016/j.marstruc.2015.03.005
34.
Stern
,
A.
,
Asanger
,
F.
, and
Lang
,
R. W.
,
1998
, “
Creep Crack Growth Testing of Plastics - II. Data Acquisition, Data Reduction and Experimental Results
,”
Polym. Test.
,
17
(
6
), pp.
423
441
.10.1016/S0142-9418(97)00068-8
35.
Lesiuk
,
G.
,
Szata
,
M.
,
Correia
,
J. A. F. O.
,
De Jesus
,
A. M. P.
, and
Berto
,
F.
,
2017
, “
Kinetics of Fatigue Crack Growth and Crack Closure Effect in Long Term Operating Steel Manufactured at the Turn of the 19th and 20th Centuries
,”
Eng. Fract. Mech.
,
185
, pp.
160
174
.10.1016/j.engfracmech.2017.04.044
36.
Ao
,
N.
,
Zhang
,
H.
,
Xu
,
H.
,
Wu
,
S.
,
Liu
,
D.
,
Xu
,
P.
,
Su
,
Y.
,
Kan
,
Q.
, and
Kang
,
G.
,
2023
, “
Corrosion Fatigue Crack Growth Behavior of a Structurally Gradient Steel for High-Speed Railway Axles
,”
Eng. Fract. Mech.
,
281
(
November 2022
), p.
109166
.10.1016/j.engfracmech.2023.109166
You do not currently have access to this content.