Abstract

For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge of the damage location and its temporal evolution is of high importance. The local failure behavior of weld joints is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the heat affected zone (HAZ) is essential for a more detailed consideration of weld behavior and has a high potential for improvement of design and inspection guidelines. In this paper, an overview of current developments in the assessment of weld joints is given. Uni-axial creep, component tests, low cycle fatigue (LCF), and creep-fatigue experiments with base material, weld joints and microstructure simulated HAZ material are presented. The use of test results of microstructure simulated HAZ material allows the parameter identification of numerical material models for the HAZ and improves the simulation of the local stress and strain behavior of weld joints. Two assessment methods, one for creep and one for fatigue/creep-fatigue were presented, based on the local behavior determined by the numerical simulations. The assessment approach for pure creep loads was validated using several uni-axial creep tests and two component tests. The approach for the fatigue/creep-fatigue loads is still in the developmental stage but the first results were presented and further areas for improvement were identified.

References

1.
Mayr
,
P.
,
2007
, “
Evolution of Microstructure and Mechanical Properties of the Heat Affected Zone in B-Containing 9% Chromium Steels
,” Ph.D. dissertation,
TU Graz
, Graz, Austria.https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=30884
2.
Brett
,
S. J.
,
2008
, “
Early Type IV Cracking on Retrofit Grade 91 Steel Headers
,”
Safety and Reliability of Welded Components in Energy Processing Industry
, p.
225
.https://www.researchgate.net/publication/296538136_Early_type_IV_cracking_on_retrofit_grade_91_steel_headers
3.
Masuyama
,
F.
,
Komai
,
N.
, and
Sasada
,
A.
,
2004
, “
Creep Failure Experience in Welds of Advanced Steel Boiler Components
,” IIW Doc, XI-795-04.
4.
Brett
,
S. J.
,
Oates
,
D. L.
, and
Johnston
,
C.
,
2005
, “
In-Service Type IV Cracking on a Modified 9Cr (Grade91) Header
,”
ECCC Conference: Creep & Fracture in High Temperature Components–Design & Life Assessment Issues
, London, UK, Sept. 12–14, pp.
563
572
.
5.
Schueller
,
H. J.
,
Haigh
,
L.
, and
Woitscheck
,
A.
,
1974
, “
Cracking in the Weld Region of Shaped Components in Hot Steam Lines – Materials Investigations
,”
Der Maschinenschaden
,
47
(
1974
), pp.
1
13
.
6.
Bauer
,
M.
,
2009
, “
Lebensdaueroptimierung Von Schweißverbindungen Martensitischer Stähle Für Hochtemperaturanwendungen
,” Ph.D. dissertation,
MPA University of Stuttgart
, Stuttgart, Germany.
7.
Storesund
,
J.
, and
Tu
,
S. T.
,
1995
, “
Geometrical Effect on Creep in Cross Weld Specimens
,”
Int. J. Pressure Vessels Piping
,
62
(
2
), pp.
179
193
.10.1016/0308-0161(94)00009-8
8.
ECCC
.
2014
, “
Creep Testing of Weldments: Practices and Investigations Into the Effects of Sampling and Size on Creep Test Results for Weldments
,”
Eur. Creep Collaborative Committee
,
3
(Part 2), Appendix 1.
9.
Kussmaul
,
K.
,
Maile
,
K.
, and
Eckert
,
W.
,
1993
, “
Influence of Stress State and Specimen Size on Creep Rupture of Similar and Dissimilar Welds
,”
ASTM Spec. Tech. Publ.
,
117
, pp.
341
341
.https://www.astm.org/stp18036s.html
10.
Takahashi
,
Y.
, and
Tabuchi
,
M.
,
2011
, “
Creep and Creep-Fatigue Behavior of High Chromium Steel Weldment
,”
Acta Metall. Sin.
,
24
(
3
), pp.
175
182
.https://www.amse.org.cn/EN/10.11890/1006-7191-113-175
11.
Veerababu
,
J.
,
Goyal
,
S.
,
Sandhya
,
R.
, and
Laha
,
K.
,
2017
, “
Low Cycle Fatigue Behaviour of Grade 92 Steel Weld Joints
,”
Int. J. Fatigue
,
105
, pp.
60
70
.10.1016/j.ijfatigue.2017.08.013
12.
Veerababu
,
J.
,
Goyal
,
S.
, and
Nagesha
,
A.
,
2021
, “
Studies on Creep-Fatigue Interaction Behavior of Grade 92 Steel and Its Weld Joints
,”
Int. J. Fatigue
,
149
(
2021
), p.
106307
.10.1016/j.ijfatigue.2021.106307
13.
Asayama
,
T.
,
Hasebe
,
S.
,
Hirakawa
,
Y.
, and
Wada
,
Y.
,
1993
, “
Creep-Fatigue Evaluation Method for Mod. 9Cr-1Mo Weldment
,”
Transactions of the 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT)
, Stuttgart, Germany, Aug. 15–20, pp.
123
128
.
14.
Yang
,
H. C.
,
Tu
,
Y.
,
Yu
,
M. M.
, and
Zhao
,
J.
,
2004
, “
Investigation of the Low Cycle Fatigue and Fatigue Crack Growth Behaviors of P91 Base Metal and Weld Joints
,”
Acta Metall. Sin. (English Lett.)
,
17
(
4
), pp.
597
600
.https://www.researchgate.net/publication/293214011_Investigation_of_the_lowcycle_fatigue_and_fatigue_crack_growth_behaviors_of_P91_base_metal_and_weld_joints
15.
Wang
,
X.
,
Zhang
,
W.
,
Gong
,
J.
, and
Jiang
,
Y.
,
2018
, “
Experimental and Numerical Characterization of Low Cycle Fatigue and Creep Fatigue Behaviour of P92 Steel Welded Joint
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
3
), pp.
611
624
.10.1111/ffe.12722
16.
Shankar
,
V.
,
Mariappan
,
K.
,
Sandhya
,
R.
,
Mathew
,
M. D.
, and
Jayakumar
,
T.
,
2014
, “
Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint
,”
Metall. Mater. Trans. A
,
45
(
3
), pp.
1390
1400
.10.1007/s11661-013-2108-x
17.
Nonaka
,
I.
,
Torihata
,
S.
,
Kihara
,
S.
, and
Umaki
,
H.
,
1998
, “
Creep-Fatigue Life Evaluation for Weldments of Modified 9Cr-1Mo Steel at Boiler Temperatures
,”
Mater. High Temp.
,
15
(
2
), pp.
69
73
.10.1080/09603409.1998.11689581
18.
Song
,
Y.
,
Ma
,
Y.
,
Chen
,
H.
,
He
,
Z.
,
Chen
,
H.
,
Zhang
,
T.
, and
Gao
,
Z.
,
2021
, “
The Effects of Tensile and Compressive Dwells on Creep-Fatigue Behavior and Fracture Mechanism in Welded Joint of P92 Steel
,”
Mater. Sci. Eng.: A
,
813
, p.
141129
.10.1016/j.msea.2021.141129
19.
Theofel
,
H.
,
1997
, “
Untersuchung Einer Artgleichen Schweißverbindung Für 9%Cr 1%Mo-Stähle Unter Besonderer Berücksichtigung Des Langzeitkriechverhaltens
,” AIF Research Project No. 9300.
20.
Buhl
,
P.
,
Baras
,
F.
,
Hüggenberg
,
D.
, and
Klenk
,
1A.
,
2015
, “
Life Assessment of Martensitic Steels and Nickel Based Alloys in the Creep Fatigue Regime
,”
41st MPA Seminar
,
Universität Stuttgart (Hg.)
,
Stuttgart, Germany
, Oct. 5–6.
21.
Bender
,
T.
, and
Klenk
,
A.
,
2020
,
Investigations on Creep Fatigue Behavior of P92 Weldments
,” Report for EnBW of Project, Stuttgart, Germany, Report No. 8416000000-1.
22.
Sakthivel
,
T.
,
Laha
,
K.
,
Chandravathi
,
K. S.
,
Parameswaran
,
P.
,
Tailor
,
H. M.
,
Vasudevan
,
M.
, and
Mathew
,
M. D.
,
2014
, “
Integrity Assessment of Grade 92 Welded Joint Under Creep Condition
,”
Procedia Eng.
,
86
, pp.
215
222
.10.1016/j.proeng.2014.11.031
23.
Abe
,
F.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
, and
Shirane
,
T.
,
2010
, “
Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
11
), pp.
598
604
.10.1016/j.ijpvp.2010.08.005
24.
Research Association, Data from Forschungsvereinigung wamfeste Stähle und Hochtemperaturwerkstoffe (Research Association High Temperature Materials).
25.
ETD,
2022
, “
Development of Inspection, Monitoring & Life Assessment Technologies & Guidelines for P91/P92 in-Service Components
,” ETD Consulting-Active Gsp Blog.
26.
Seifert
,
T.
,
Borsutzki
,
M.
, and
Geisler
,
S.
,
2006
, “
Ein Komplexes LCF-Versuchsprogramm Zur Schnellen Und Günstigen Werkstoffparameteridentifizierung
,”
Proceedings of Werkstoffprüfung
, Bad Neuenahr, Germany, pp.
409
414
.
27.
Ogata
,
T.
, and
Yaguchi
,
M.
,
2001
, “
Study on Creep-Fatigue Damage Evaluation for Boiler Weldment Parts
,”
ASME J. Pressure Vessel Technol.
,
123
(
1
), pp.
105
111
.10.1115/1.1339979
28.
Li
,
M.
,
Barrett
,
R. A.
,
Scully
,
S.
,
Harrison
,
N. M.
,
Leen
,
S. B.
, and
O'Donoghue
,
P. E.
,
2016
, “
Cyclic Plasticity of Welded P91 Material for Simple and Complex Power Plant Connections
,”
Int. J. Fatigue
,
87
, pp.
391
404
.10.1016/j.ijfatigue.2016.02.005
29.
Zhao
,
L.
,
Jing
,
H.
,
Xu
,
L.
,
An
,
J.
, and
Xiao
,
G.
,
2012
, “
Numerical Investigation of Factors Affecting Creep Damage Accumulation in ASME P92 Steel Welded Joint
,”
Mater. Des.
,
34
, pp.
566
575
.10.1016/j.matdes.2011.05.009
30.
Wang
,
X.
,
Wang
,
X.
,
Wang
,
C.
,
Zhang
,
Y. L.
, and
Huang
,
Q. S.
,
2020
, “
Effect of Multiaxial Stress State on Creep Damage in ASME T92 Welded Joint
,”
Fatigue Fract. Eng. Mater. Struct.
, 43(5), pp. 907–918.10.1111/ffe.13160
31.
Fehér
,
A.
,
2014
, “
Ein Beitrag Zur Qualifizierung Und Simulation Von Schweißverbindungen Moderner Kesselbauwerkstoffe
,” Ph.D. dissertation,
University of Darmstadt
, Darmstadt, Germany.
32.
Touboul
,
M.
,
Crepin
,
J.
,
Rousselier
,
G.
,
Latourte
,
F.
, and
Leclercq
,
S.
,
2013
, “
Identification of Local Viscoplastic Properties in P91 Welds From Full Field Measurements at Room Temperature and 625 C
,”
Exp. Mech.
,
53
(
3
), pp.
455
468
.10.1007/s11340-012-9655-8
33.
Zhou
,
J.
,
Barrett
,
R. A.
, and
Leen
,
S. B.
,
2021
, “
A Physically-Based Method for Predicting High Temperature Fatigue Crack Initiation in P91 Welded Steel
,”
Int. J. Fatigue
,
153
, p.
106480
.10.1016/j.ijfatigue.2021.106480
34.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long and Short Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
104
121
.
35.
Schmidt
,
K. H.
,
2013
, “
Komponentenverhalten im 700 °C-Kraftwerk: Numerische Und Experimentelle Untersuchungen
,” Ph.D. dissertation,
University of Stuttgart
, Stuttgart, Germany.
36.
Feuillette
,
C.
,
2010
, “
Stoffgesetzzeugnis P91 (X10CrMoVNb9-1) Larson-Miller Anpassung (Anisotherm)
,”
MPA Stuttgart
, Stuttgart, Germany.
37.
Roos
,
E.
,
Klenk
,
A.
, and
Krojer
,
S.
,
2013
, Forschungsinitiative Kraftwerke Des 21.Jahrhunderts, Teilvorhaben Anisotherm Beanspruchte Schweißverbindungen Für Turbomaschinen, Teilprojekt 31 DT, “
Temperaturabhängiges Verhalten von hochbeanspruchten Bauteilen im Turbomaschinenbau mit ungleichartigen Nickelbasis-Schweißverbindungen,
” Abschlussbericht,
MPA Universität Stuttgart
,
Stuttgart, Germany
.
38.
Schleyer
,
J. M.
,
2020
, “
Lebensdauervorhersage Von Mischschweißverbindungen Für Hochtemperaturbeanspruchung
,” Ph.D. dissertation,
University of Stuttgart
, Stuttgart, Germany.
39.
Nouailhas
,
D.
,
1989
, “
Unified Modelling of Cyclic Viscoplasticity: Application to Austenitic Stainless Steels
,”
Int. Journal Plasticity
,
5
(
5
), pp.
501
520
.10.1016/0749-6419(89)90011-9
40.
Ohno
,
N.
,
1998
, “
Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
251
261
.10.1016/S0020-7403(97)00053-2
41.
Bicego
,
V.
,
Bontempi
,
P.
,
Mariani
,
R.
, and
Taylor
,
N.
,
1998
, “
Fatigue Behaviour of Modified 9Cr Steels, Base and Welds
,”
Mater. Adv. Power Eng.
, 5(1), pp.
383
392
.
42.
Hüggenberg
,
D.
,
Buhl
,
P.
, and
Klenk
,
A.
,
2014
, “
Numerical Simulation of Deformation and Damage in Martensitic Welds
,”
3rd International ECCC Conference
, Rome, Italy, May 5–7, pp.
5
7
.
43.
Hobt
,
A.
,
2015
, “
Bewertung Von Fehlstellen im Kriechbereich
,” Ph.D. dissertation,
University of Stuttgart
, Stuttgart, Germany.
44.
Schleyer
,
J.
,
Speicher
,
M.
,
Klenk
,
A.
, and
Seidenfuß
,
M.
,
2017
, “
Assessment of Welds in Components With Similar Martensitic Welds Using Cross Weld Data and Numerical Calculations
,”
4th International ECCC Conference
, Duesseldorf, Germany, Sept. 10–14, pp.
10
14
.
45.
Schleyer
,
J.
,
Bender
,
T.
, and
Klenk
,
A.
,
2018
, “
Developments in Assessment of Welds Under Creep, Fatigue and Creep-Fatigue Loadings
,”
Conference on Power Plant Operation & Flexibility
, London, UK, July 4–6.
46.
Ewald
,
J.
, and
Kern
,
T. U.
,
2016
, “
Zur Bedeutung Der Gleichmaßdehnung
,”
Vortragsveranstaltung FVWHT
, Vol.
39
, Forschungsvereinigung Warmfeste Stähle und Hochtemperaturwerkstoffe, Duesseldorf, Germany, pp.
406
410
.
47.
Holdsworth
,
S.
,
2019
, “
Creep-Ductility of High Temperature Steels: A Review
,”
Metals
,
9
(
3
), p.
342
.10.3390/met9030342
48.
Ewald
,
J.
, and
Kern
,
T. U.
,
2017
, “
The Role of the Material Parameter Uniform Elongation
,”
Proceedings of the 4th International ECCC Conference
, Düsseldorf, Germany, Sept. 10–14, pp.
10
14
.
49.
Robust Evaluation of Fracture Deformation Parameters to Use the Creep Ductility Within Advanced Lifetime Assessment Concepts
,” Current Ongoing Project AVIF-A314.
50.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
.10.1179/030634580790441187
51.
Clausmeyer
,
H.
,
Kußmaul
,
K.
, and
Roos
,
E.
,
1989
, “
Der Einfluß Des Spannungszustandes Auf Den Versagensablauf Angerissener Bauteile Aus Stahl
,”
Materialwiss. Werkstofftech.
,
20
(
4
), pp.
101
117
.10.1002/mawe.19890200410
52.
Meltzer
,
R. L.
,
Fiorini
,
Y. R.
,
Horstman
,
R. T.
,
Moore
,
I. C.
,
Batik
,
A. L.
, and
Ostergren
,
W. J.
,
1976
, “
A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue
,”
J. Test. Evaluation
,
4
(
5
), pp.
327
339
.10.1520/JTE10520J
53.
Wang
,
R.-Z.
,
Zhang
,
X.-C.
,
Gong
,
J.-G.
,
Zhu
,
X.-M.
,
Tu
,
S.-T.
, and
Zhang
,
C.-C.
,
2017
, “
Creep-Fatigue Life Prediction and Interaction Diagram in Nickel-Based GH4169 Superalloy at 650 C Based on Cycle-by-Cycle Concept
,”
Int. J. Fatigue
,
97
, pp.
114
123
.10.1016/j.ijfatigue.2016.11.021
54.
British Energy Plant Integrity,
2003
, “
R5, Assessment Procedure for the High Temperature Response of Structures
,” Issue 3,
British Energy Generation Ltd
.,
Barnwood, UK
.
55.
Takahashi
,
Y.
,
Dogan
,
B.
, and
Gandy
,
D.
,
2013
, “
Systematic Evaluation of Creep-Fatigue Life Prediction Methods for Various Alloys
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061204
.10.1115/1.4024436
56.
Hales
,
R.
,
1983
, “
The Application of Creep-Damage Summation to the Assessment of Creep-Fatigue Endurance of Two Ferritic Steels
,” CEGB, British Energy, Gloucester, UK, No. TPRD/B/0288/N83.
57.
Zhang
,
W.
,
Yang
,
Q.
,
Yin
,
P.
,
Zhang
,
G.
,
Xia
,
X.
,
Zhao
,
Y.
,
Wang
,
L.
,
Jiang
,
G.
, and
Zhou
,
C.
,
2022
, “
Thermomechanical Fatigue and Fracture Behaviours of Welded Joints at Various Temperatures
,”
Eng. Fract. Mech.
,
271
, p.
108644
.10.1016/j.engfracmech.2022.108644
You do not currently have access to this content.