Abstract

Corrosion is one of the major threats to the safety and structural integrity of oil and gas transmission pipelines. The corrosion threat is usually managed by regular in-line inspection (ILI). The effective area method (RSTRENG) is the most popular corrosion assessment model to convert the measured corrosion size to predicted burst pressure. Given a detailed corrosion measurement profile, the effective area method involves an iterative process to find the minimum burst pressure. As stated in ASME B31G, “for a corroded profile defined by n measurements of depth of corrosion including the end points at nominally full wall thickness, n!/2(n − 2)! iterations are required to examine all possible combinations of local metal loss with respect to surrounding remaining material,” the widely used effective area algorithm has at least an order of n-square time complexity (O(n2)). As n increases, the computation time increases nonlinearly. This paper reviewed the traditional RSTRENG algorithm first, and demonstrated that it is not necessary to always loop through all the combinations and check the corresponding burst pressure one by one. Because some combinations with shallower and shorter corrosion size are certainly not the final critical combination corresponding to the minimum burst pressure. A more efficient algorithm (Faster RSTRENG) is proposed and presented in this paper, which can reduce the algorithm computation time significantly.

References

1.
Zhou
,
W.
,
Gong
,
C.
, and
Kariyawasam
,
S.
,
2016
, “
Failure Pressure Ratios and Implied Reliability Levels for Corrosion Anomalies on Gas Transmission Pipelines
,”
ASME
Paper No. IPC2016-64383
.10.1115/IPC2016-64383
2.
Kariyawasam
,
S.
,
Zhang
,
S.
, and
Yan
,
J.
,
2020
, “
A Data Driven Validation of a Defect Assessment Model and Its Safe Implementation
,”
ASME
Paper No. IPC2020-9690
.10.1115/IPC2020-9690
3.
Kariyawasam
,
S.
,
Zhang
,
S.
,
Yan
,
J.
,
Kariyawasam
,
S.
,
Huang
,
T.
, and
Al-Amin
,
M.
,
2019
, “
Improving Safety and Economy Through a More Accurate and Precise Burst Pressure Model
,”
Proceedings of 22nd Joint Technical Meeting
,
Brisbane, Australia
, Apr. 29–May 3, Paper No. 31.
4.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1989
, “
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,” Pipeline Research Council International, Inc, Battelle Memorial Institute, Houston, TX.
5.
ASME
,
2012
,
Manual for Determining the Remaining Strength of Corroded Pipelines, a Supplement to ASME B31 Code for Pressure Piping
, ASME B31G-2012, ASME, New York.https://www.asme.org/getmedia/7336b61b-5762-47cabdcb-8a4e0de6f162/33501.pdf
6.
Kiefner
,
J. F.
,
Maxey
,
W. A.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1973
, “
Failure Stress Levels of Flaws in Pressurized Cylinders
,”
Progress in Flaw Growth and Fracture Toughness Testing
,
American Society for Testing and Materials STP
,
Philadelphia
, PA, pp.
461
481
.https://www.astm.org/stp49657s.html
7.
ASME
,
1984
, Manual for Determining the Remaining Strength of Corroded Pipelines, a Supplement to ASME B31 Code for Pressure Piping, ASME B31G-1984, ASME, New York.
8.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe – 1: New Method Corrects Criterion for Evaluating Corroded Pipe
,”
Oil Gas J.
, 88(32), pp.
56
59
.https://www.ogj.com/pipelinestransportation/pipelines/article/17214348/evaluating-pipe1-new-method-corrects-criterion-forevaluating-corroded-pipe
9.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1990
, “
Evaluating Pipe – Conclusion: “PC Program Speeds New Criterion for Evaluating Corroded Pipe”
,”
Oil Gas J.
, 88(34), pp.
91
93
.https://www.ogj.com/home/article/17214053/evaluating-pipeconclusion-pc-program-speeds-newcriterion-for-evaluating-corroded-pipe
10.
Vieth
,
P. H.
, and
Kiefner
,
J. F.
,
1993
, “
Database of Corroded Pipe Tests
,” PRCI Report, Contract Catalog No. PR-218-9206.
11.
Kiefner
,
J. F.
,
Vieth
,
P. H.
, and
Roytman
,
I.
,
1996
, “
Continued Validation of RSTRENG
,” PRCI Report Catalog No. L51749, Contract Catalog No. PR 218–9304.
12.
ASME
,
2019
, Pipeline Transportation Systems for Liquids and Slurries,
ASME B31.4-2019, ASME, New York
.
13.
ASME
,
2020
, Gas Transmission and Distribution Piping Systems, ASME B31.8-2020, ASME, New York.
14.
Canadian Standards Association CSA,
2019
,
Oil and Gas Pipeline Systems
,
Canadian Standards Association CSA
, CSA Z662-2019.
15.
Kariyawasam
,
S.
,
Zhang
,
S.
,
Yan
,
J.
,
Kariyawasam
,
S.
,
Huang
,
T.
,
Al-Amin
,
M.
, and
Gamboa
,
G.
,
2019
, “
Plausible Profiles (PSQR) Model for Corrosion Assessment
,” Technical report submitted to PRCI, Project No. EC-2-9.
16.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
,
2009
,
Introduction to Algorithms
,
MIT Press
, Cambridge, MA.
17.
Owen
,
A.
,
2013
,
Monte Carlo Theory, Methods and Examples
,
McBooks Press
, Lanham, MD.
18.
Yan
,
J.
,
Zhang
,
S.
,
Kariyawasam
,
S.
,
Lu
,
D.
, and
Matchim
,
T.
,
2020
, “
Reliability-Based Crack Threat Assessment and Management
,”
ASME
Paper No. IPC2020-9484.10.1115/IPC2020-9484
19.
Zhang
,
S.
,
Yan
,
J.
,
Kariyawasam
,
S.
,
Huang
,
T.
, and
Al-Amin
,
M.
,
2018
, “
A More Accurate and Precise Method for Large Metal Loss Corrosion Assessment
,”
ASME
Paper No. IPC2018-78233
.10.1115/IPC2018-78233
20.
Zhang
,
S.
,
Yan
,
J.
,
Kariyawasam
,
S.
,
Huang
,
T.
, and
Al-Amin
,
M.
,
2020
, “
Plausible Profile (Psqr) Corrosion Assessment Model: Refinement, Validation and Operationalization
,”
ASME
Paper No. IPC2020-9448
.10.1115/IPC2020-9448
21.
Kiefner
,
J. F.
,
Cosham
,
A.
,
Gao
,
M.
,
Hopkins
,
P.
,
Krishnamurthy
,
R.
,
Nessim
,
M.
,
Nestleroth
,
B.
, and
Rosenfeld
,
M.
,
2019
, “
Peer Review of the Plausible Profile (Psqr) Corrosion Assessment Model
,” PRCI Report, Project No. EC-2-9, Contract Catalog No. PR218-183607-Z01.
22.
Kiefner
,
J. F.
,
2020
, “
Peer Review of the Plausible Profile Corrosion Assessment Model
,”
ASME
Paper No. IPC2020-9254
.10.1115/IPC2020-9254
23.
Folias
,
E. S.
,
1965
, “
The Stresses in a Cylindrical Shell Containing an Axial Crack
,”
Int. J. Fract. Mech.
,
1-1
(
2
), pp.
104
113
.10.1007/BF00186748
24.
Chauhan
,
V.
,
Brister
,
J.
, and
Dafea
,
M.
,
2009
, “
A Review of Methods for Assessing the Remaining Strength of Corroded Pipelines
,” U.S. Department of Transportation (DOT), Pipeline and Hazardous Materials Safety Administration (PHMSA), Report No. 6781.
25.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
2011
, “
Pipeline Defect Assessment – A Review and Comparison of Commonly Used Methods
,” PRCI Report, Contract Catalog No. PR-218-05404.
26.
Zhou
,
W.
, and
Huang
,
G. X.
,
2012
, “
Model Error Assessments of Burst Capacity Models for Corroded Pipelines
,”
Int. J. Pressure Vessels Piping
,
99–100
, pp.
1
8
.10.1016/j.ijpvp.2012.06.001
27.
Zhu
,
X.-K.
,
2021
, “
A Comparative Study of Burst Failure Models for Assessing Remaining Strength of Corroded Pipelines
,”
J. Pipeline Sci. Eng.
,
1
(
1
), pp.
36
50
.10.1016/j.jpse.2021.01.008
28.
Zhou
,
W.
, and
Huang
,
G.
,
2012
, “
Model Error Assessment of Burst Capacity Models for Defect-Free Pipes
,”
ASME
Paper No. IPC2012-90334
.10.1115/IPC2012-90334
You do not currently have access to this content.