Abstract

Traditional investigation of polyethylene pipe (PE) subjected to external loads focused only on the study of mechanical behavior or the failure judgment, but could not predict the damage evolution process. In this paper, a quantitative assessment was conducted for the damage of PE pipe subjected to land subsidence. Specifically, a static damage model was proposed based on failure pressure. Then, a finite element model of the buried PE pipe was established to calculate the failure pressure of smooth or notched pipe. Finally, the damage of the buried PE pipes suffering from land subsidence was computed by the damage model. The results show that the failure pressure and damage curves of smooth PE pipe can be divided into increased, steady, and reducing stages. For notched PE pipe, the damage curve can be divided into initial, middle, and late stages when the notch depth coefficient A (notch depth/thickness) equals to 0.1. But when A surpasses 0.2, the damage curve loses its middle stage and rapid damage follows. The threshold of the late stage of damage can be regarded as the last warning value of the damage of PE pipe under land subsidence, which indicates the maintenance measures should be taken immediately. The defects on the pipe accelerated the speed of damage and the late stage of damage evolution.

Reference

1.
Chaoui
,
K.
,
Khelif
,
R.
,
Zeghib
,
N.
, and
Chateauneuf
,
A.
,
2008
,
Failure Analysis of Polyethylene Gas Pipes
,
Springer
,
Dordrecht, The Netherlands
.
2.
Brown
,
N.
,
2007
, “
Intrinsic Lifetime of Polyethylene Pipelines
,”
Polym. Eng. Sci.
,
47
(
4
), pp.
477
480
.10.1002/pen.20696
3.
Luo
,
X.
,
Ma
,
J.
,
Zheng
,
J.
, and
Shi
,
J.
,.
2014
, “
Finite Element Analysis of Buried Polyethylene Pipe Subjected to Seismic Landslide
,”
ASME J. Pressure Vessel Technol.
,
136
(
3
), p.
031801
.10.1115/1.4026148
4.
Wu
,
Y.
,
Zha
,
S. X.
, and
Jin
,
P. W.
,
2019
, “
Finite Element Method Simulations to Study Factors Affecting Buried Pipeline Subjected to Debris Flow
,”
ASME J. Pressure Vessel Technol.
,
141
(
2
), p.
021701
.10.1115/1.4042055
5.
Luo
,
X.
,
Lu
,
S.
,
Shi
,
J.
,
Li
,
X.
, and
Zheng
,
J.
,.
2015
, “
Numerical Simulation of Strength Failure of Buried Polyethylene Pipe Under Foundation Settlement
,”
Eng. Failure Anal.
,
48
, pp.
144
152
.10.1016/j.engfailanal.2014.11.014
6.
Cao
,
Z.
,
Han
,
J.
,
Xu
,
C.
,
Khatri
,
D. K.
,
Corey
,
R.
, and
Cai
,
Y.
,.
2016
, “
Road Surface Permanent Deformations With a Shallowly Buried Steel-Reinforced High-Density Polyethylene Pipe Under Cyclic Loading
,”
Geotext. Geomem.
,
44
(
1
), pp.
28
38
.10.1016/j.geotexmem.2015.06.009
7.
Zhang
,
F.
,
Branam
,
N.
,
Zand
,
B.
, and Auker, M. V.,
2016
, “
A New Approach to Determine the Stresses in Buried Pipes Under Surface Loading
,”
ASME
Paper No. IPC2016-64050.10.1115/IPC2016-64050
8.
Wang
,
M.
,
Zhong
,
M.
,
Long
,
Y.
,
Ding
,
K.
,
Xie
,
X.
, and
Ying
,
L.
,.
2018
, “
Study on Dynamic Strain Regularity and Influencing Factors of Shallow Buried Metal Pipe Under Collapse Impact Load
,”
Shock Vib.
,
2018
, pp.
1
11
.10.1155/2018/8792564
9.
Wu
,
K.
,
Zhang
,
H.
,
Liu
,
X.
,
Bolati
,
D.
,
Liu
,
G.
,
Chen
,
P.
, and
Zhao
,
Y.
,
2019
, “
Stress and Strain Analysis of Buried PE Pipelines Subjected to Mechanical Excavation
,”
Failure Anal.
,
106
, p.
104171
.10.1016/j.engfailanal.2019.104171
10.
Liu
,
X.
,
Zhang
,
H.
,
Xia
,
M.
,
Wu
,
K.
,
Chen
,
Y.
,
Zheng
,
Q.
, and
Li
,
J.
,
2018
, “
Mechanical Response of Buried Polyethylene Pipelines Under Excavation Load During Pavement Construction
,”
Eng. Failure Anal.
,
90
, pp.
355
370
.10.1016/j.engfailanal.2018.03.027
11.
Wu
,
Y.
,
You
,
X.
, and
Zha
,
S.
,
2020
, “
Mechanical Behavior Analysis of Buried Polyethylene Pipe Under Land Subsidence
,”
Eng. Failure Anal.
,
108
, p.
104351
.10.1016/j.engfailanal.2019.104351
12.
Bourchak
,
M.
, and
Aid
,
A.
,
2017
, “
PE-HD Fatigue Damage Accumulation Under Variable Loading Based on Various Damage Models
,”
Exp. Polym. Lett.
,
11
(
2
), pp.
117
126
.10.3144/expresspolymlett.2017.13
13.
Majid
,
F.
, and
Elghorba
,
M.
,
2017
, “
HDPE Pipes Failure Analysis and Damage Modeling
,”
Eng. Failure Anal.
,
71
, pp.
157
165
.10.1016/j.engfailanal.2016.10.002
14.
Wang
,
B.
,
Li
,
J. S.
, and
Li
,
M. D.
,.
2018
, “
Effect of Crack Depth Ratio on Mechanical Properties of Polyethylene Pipes and Damage Modeling
,”
China Plast. Ind.
,
46
(
2
), pp.
128
132
.
15.
Zhang
,
Y.
, and
Ben Jar
,
P.-Y.
,
2015
, “
Quantitative Assessment of Deformation-Induced Damage in Polyethy -Lene Pressure Pipe
,”
Polym. Test.
,
47
, pp.
42
50
.10.1016/j.polymertesting.2015.08.005
16.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
,
12
(
3
), pp.
159
164
.
17.
Mesmacque
,
G.
,
Garcia
,
S.
,
Amrouche
,
A.
, and
Rubiogonzalez
,
C.
,.
2005
, “
Sequential Law in Multiaxial Fatigue, a New Damage Indicator
,”
Int. J. Fatigue
,
27
(
4
), pp.
461
467
.10.1016/j.ijfatigue.2004.08.005
18.
Aid
,
A.
,
Bendouba
,
M.
,
Aminallah
,
L.
,
Amrouche
,
A.
,
Benseddiq
,
N.
, and
Benguediab
,
M.
,
2012
, “
An Equivalent Stress Process for Fatigue Life Estimation Under Multiaxial Loadings Based on a New Non Linear Damage Model
,”
Mater. Sci. Eng. A
,
538
, pp.
20
27
.10.1016/j.msea.2011.12.105
19.
Aid
,
A.
,
Amrouche
,
A.
,
Bouiadjra
,
B. B.
, et al.
2011
, “
Fatigue Life Prediction Under Variable Loading Based on a New Damage Model
,”
Mater. Des.
,
32
(
1
), pp.
183
191
.10.1016/j.matdes.2010.06.010
20.
Djebli
,
A.
,
Aid
,
A.
,
Bendouba
,
M.
,
Amrouche
,
A.
,
Benguediab
,
M.
, and
Benseddiq
,
N.
,
2013
, “
A Non-Linear Energy Model of Fatigue Damage Accumulation and Its Verification for Al-2024 Aluminum Alloy
,”
Int. J. Non-Linear Mech.
,
51
, pp.
145
151
.10.1016/j.ijnonlinmec.2013.01.007
21.
Bathias
,
C.
,
2013
,
Fatigue of Materials and Structures
,
Wiley
,
Hoboken, NJ
.
22.
Bui
,
Q.
,
1971
, “
Cumulative Fatigue Damage Under Stress-Controlled Conditions
,”
ASME J. Basic Eng.
,
93
(
4
), pp.
691
698
.10.1115/1.3425328
23.
Gatts
,
R.
,
1961
, “
Application of a Cumulative Damage Concept to Fatigue
,”
ASME J. Basic Eng.
,
83
(
4
), pp.
529
540
.10.1115/1.3662256
24.
Valluri
,
S. R.
,
1961
, “
A Unified Engineering Theory of High Stress Level Fatigue
,”
Aerosp. Eng.
,
20
(
10
), pp.
18
19
.https://www.osti.gov/biblio/4828698
25.
Kunert
,
H. G.
,
Otegui
,
J. L.
, and
Marquez
,
A.
,
2012
, “
Nonlinear FEM Strategies for Modeling Pipe–Soil Interaction
,”
Eng. Failure Anal.
,
24
, pp.
46
56
.10.1016/j.engfailanal.2012.03.008
26.
Liao
,
G. Y.
,
2008
,
Application of ABAQUS Finite Element Software in Road Engineering
,
Southeast University Press
,
Nanjing, China
(in Chinese).
27.
Suleiman
,
M. T.
,
A. M.
,
Asce
,
B. J.
, and
Coree
,
P. E.
,
2004
, “
Constitutive Model for High Density Polyethy -Lene Material: Systematic Approach
,”
J. Mater. Civ. Eng.
,
16
(
6
), pp.
511
515
.10.1061/(ASCE)0899-1561(2004)16:6(511)
28.
Zheng
,
J. Y.
,
Zhang
,
B. J.
,
Liu
,
P. F.
, and
Wu
,
L. L.
,.
2012
, “
Failure Analysis and Safety Evaluation of Buried Pipeline Due to Deflection of Landslide Process
,”
Eng. Failure Anal.
,
25
, pp.
156
168
.10.1016/j.engfailanal.2012.05.011
You do not currently have access to this content.