Abstract

This paper explores an isogeometric boundary element method (IGA-BEM) for sloshing problems in cylindrical tanks with single and multiply connected domains. Instead of the Lagrange basis functions used in the standard BEM, the nonuniform rational B-splines (NURBS) basis functions are introduced to approximate the geometries of the problem boundaries and the unknown variables. Compared with the Lagrange basis functions, NURBS basis functions can accurately reconstruct the geometric boundary of analysis domain with almost no error, and all the data information for NURBS basis functions can be directly obtained from the computer-aided design (cad) or computer-aided engineering (cae) commercial software, which implies the modeling process of IGA-BEM is more simple than that of the standard BEM. NURBS makes it possible for the IGA-BEM to realize the seamless connection between cad and cae software with relative higher calculation accuracy than the standard BEM. Based on the weighted residual method as well as the divergence theorem, the IGA-BEM is developed for the single and multiply connected domains, whose boundaries are separately defined in the parameter space by different knot vectors. The natural sloshing frequencies of the liquid sloshing in a circular cylindrical tank with a coaxial or an off-center circular pipe, an elliptical cylindrical tank with an elliptical pipe, a circular cylindrical tank with multiple pipes are estimated with the introduced method by assuming an ideal (inviscid and incompressible) liquid, irrotational small-amplitude sloshing, and the linear free-surface condition. The comparison between the results obtained by the proposed method and those in the existing literatures shows very good agreements, which verifies the proposed model well. Meanwhile, the effects of radius ratio, liquid depth, number, and location of internal pipe (pipes) on the natural sloshing frequency and sloshing mode are analyzed carefully, and some conclusions are outlined finally.

References

1.
Abramson
,
H. N.
,
1966
, “
The Dynamic Behavior of Liquids in Moving Containers With Applications to Space Vehicle Technology
,” NASA, Washington, DC, Report No.
19670006555
.https://ntrs.nasa.gov/citations/19670006555
2.
Mciver
,
P.
,
1989
, “
Sloshing Frequencies for Cylindrical and Spherical Containers Filled to an Arbitrary Depth
,”
J. Fluid Mech.
,
201
(
1
), p.
243
.10.1017/S0022112089000923
3.
Gavrilyuk
,
I.
,
Hermann
,
M.
,
Lukovsky
,
I.
,
Solodun
,
O.
, and
Timokha
,
A.
,
2008
, “
Natural Sloshing Frequencies in Rigid Truncated Conical Tanks
,”
Eng. Comput.
,
25
(
6
), pp.
518
540
.10.1108/02644400810891535
4.
Gavrilyuk
,
I. P.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
,
2005
, “
Linear and Nonlinear Sloshing in a Circular Conical Tank
,”
Fluid Dyn. Res.
,
37
(
6
), pp.
399
429
.10.1016/j.fluiddyn.2005.08.004
5.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2014
, “
Analytically Approximate Natural Sloshing Modes and Frequencies in Two-Dimensional Tanks
,”
Eur. J. Mech.-B
,
47
, pp.
176
187
.10.1016/j.euromechflu.2014.01.005
6.
Ravnik
,
J.
,
Strelnikova
,
E.
,
Gnitko
,
V.
,
Degtyarev
,
K.
, and
Ogorodnyk
,
U.
,
2016
, “
BEM and FEM Analysis of Fluid–Structure Interaction in a Double Tank
,”
Eng. Anal. Boundary Elem.
,
67
, pp.
13
25
.10.1016/j.enganabound.2016.02.006
7.
Gavrilyuk
,
I.
,
Lukovsky
,
I.
,
Trotsenko
,
Y.
, and
Timokha
,
A.
,
2006
, “
Sloshing in a Vertical Circular Cylindrical Tank With an Annular Baffle—Part 1: Linear Fundamental Solutions
,”
J. Eng. Math.
,
54
(
1
), pp.
71
88
.10.1007/s10665-005-9001-6
8.
Hasheminejad
,
S. M.
, and
Aghabeigi
,
M.
,
2012
, “
Sloshing Characteristics in Half-Full Horizontal Elliptical Tanks With Vertical Baffles
,”
Appl. Math. Modell.
,
36
(
1
), pp.
57
71
.10.1016/j.apm.2011.02.026
9.
Hasheminejad
,
S. M.
,
Mohammadi
,
M. M.
, and
Jarrahi
,
M.
,
2014
, “
Liquid Sloshing in Partly-Filled Laterally-Excited Circular Tanks Equipped With Baffles
,”
J. Fluids Struct.
,
44
, pp.
97
114
.10.1016/j.jfluidstructs.2013.09.019
10.
Gedikli
,
A.
, and
Ergüven
,
M. E.
,
1999
, “
Seismic Analysis of a Liquid Storage Tank With a Baffle
,”
J. Sound Vib.
,
223
(
1
), pp.
141
155
.10.1006/jsvi.1999.2091
11.
Gedikli
,
A.
, and
Ergüven
,
M. E.
,
2003
, “
Evaluation of Sloshing Problem by Variational Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
27
(
9
), pp.
935
943
.10.1016/S0955-7997(03)00046-8
12.
Firouz-Abadi
,
R. D.
,
Haddadpour
,
H.
, and
Ghasemi
,
M.
,
2009
, “
Reduced Order Modeling of Liquid Sloshing in 3D Tanks Using Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
33
(
6
), pp.
750
761
.10.1016/j.enganabound.2009.01.005
13.
Firouz-Abadi
,
R. D.
,
Haddadpour
,
H.
,
Noorian
,
M. A.
, and
Ghasemi
,
M.
,
2008
, “
A 3D BEM Model for Liquid Sloshing in Baffled Tanks
,”
Int. J. Numer. Methods Eng.
,
76
(
9
), pp.
1419
1433
.10.1002/nme.2363
14.
Ebrahimian
,
M.
,
Noorian
,
M. A.
, and
Haddadpour
,
H.
,
2013
, “
A Successive Boundary Element Model for Investigation of Sloshing Frequencies in Axisymmetric Multi Baffled Containers
,”
Eng. Anal. Boundary Elem.
,
37
(
2
), pp.
383
392
.10.1016/j.enganabound.2012.11.006
15.
Kolaei
,
A.
,
Rakheja
,
S.
, and
Richard
,
M. J.
,
2014
, “
Anti-Sloshing Effects of Longitudinal Partial Baffles in a Partly-Filled Container Under Lateral Excitation
,”
ASME
Paper No. IMECE2014-37271.10.1115/IMECE2014-37271
16.
Kolaei
,
A.
,
Rakheja
,
S.
, and
Richard
,
M. J.
,
2015
, “
A Coupled Multimodal and Boundary-Element Method for Analysis of Anti-Slosh Effectiveness of Partial Baffles in a Partly-Filled Container
,”
Comput. Fluids
,
107
, pp.
43
58
.10.1016/j.compfluid.2014.10.013
17.
Degtyarev
,
K.
,
Gnitko
,
V.
,
Naumenko
,
V.
, and
Strelnikova
,
E.
,
2016
, “
Reduced Boundary Element Method for Liquid Sloshing Analysis of Cylindrical and Conical Tanks With Baffles
,”
Electron. Eng. Comput. Sci.
,
1
(
1
), pp.
14
27
.https://www.researchgate.net/publication/305776130_Reduced_Boundary_Element_Method_for_Liquid_Sloshing_Analysis_of_Cylindrical_and_Conical_Tanks_with_Baffles
18.
Gnitko
,
V.
,
Naumemko
,
Y.
, and
Strelnikova
,
E.
,
2017
, “
Low Frequency Sloshing Analysis of Cylindrical Containers With Flat and Conical Baffles
,”
Int. J. Appl. Mech. Eng.
,
22
(
4
), pp.
867
881
.10.1515/ijame-2017-0056
19.
Choudhary
,
N.
, and
Bora
,
S. N.
,
2017
, “
Linear Sloshing Frequencies in the Annular Region of a Circular Cylindrical Container in the Presence of a Rigid Baffle
,”
Sadhana
,
42
(
5
), pp.
805
815
.10.1007/s12046-017-0642-8
20.
Wang
,
W.
,
Peng
,
Y.
,
Zhang
,
Q.
,
Ren
,
L.
, and
Jiang
,
Y.
,
2017
, “
Sloshing of Liquid in Partially Liquid Filled Toroidal Tank With Various Baffles Under Lateral Excitation
,”
Ocean Eng.
,
146
, pp.
434
456
.10.1016/j.oceaneng.2017.09.032
21.
Hu
,
Z.
,
Zhang
,
X.
,
Li
,
X.
, and
Li
,
Y.
,
2018
, “
On Natural Frequencies of Liquid Sloshing in 2-D Tanks Using Boundary Element Method
,”
Ocean Eng.
,
153
, pp.
88
103
.10.1016/j.oceaneng.2018.01.062
22.
Zheng
,
X.
,
You
,
Y.
,
Ma
,
Q.
,
Khayyer
,
A.
, and
Shao
,
S.
,
2018
, “
A Comparative Study on Violent Sloshing With Complex Baffles Using the ISPH Method
,”
Appl. Sci.
,
8
(
6
), p.
904
.10.3390/app8060904
23.
Drake
,
K. R.
,
1999
, “
The Effect of Internal Pipes on the Fundamental Frequency of Liquid Sloshing in a Circular Tank
,”
Appl. Ocean Res.
,
21
(
3
), pp.
133
143
.10.1016/S0141-1187(99)00002-4
24.
Timokha
,
A.
,
2016
, “
Analytically Approximate Natural Sloshing Modes and Frequencies for an Upright Circular Container With Poles
,”
J. Eng. Math.
,
101
(
1
), pp.
47
54
.10.1007/s10665-016-9845-y
25.
Hasheminejad
,
S. M.
, and
Soleimani
,
H.
,
2017
, “
Linear Solution for Liquid Sloshing in an Upright Elliptical Cylindrical Container With an Eccentric Core Barrel
,”
J. Eng. Mech.
,
143
(
9
), p.
04017105
.10.1061/(ASCE)EM.1943-7889.0001317
26.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
27.
Simpson
,
R. N.
,
Bordas
,
S. P. A.
,
Trevelyan
,
J.
, and
Rabczuk
,
T.
,
2012
, “
A Two-Dimensional Isogeometric Boundary Element Method for Elastostatic Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
209–212
, pp.
87
100
.10.1016/j.cma.2011.08.008
28.
Belibassakis
,
K. A.
,
Gerostathis
,
T. P.
,
Kostas
,
K. V.
,
Politis
,
C. G.
,
Kaklis
,
P. D.
,
Ginnis
,
A. I.
, and
Feurer
,
C.
,
2013
, “
A BEM-Isogeometric Method for the Ship Wave-Resistance Problem
,”
Ocean Eng.
,
60
, pp.
53
67
.10.1016/j.oceaneng.2012.12.030
29.
Simpson
,
R. N.
,
Scott
,
M. A.
,
Taus
,
M.
,
Thomas
,
D. C.
, and
Lian
,
H.
,
2014
, “
Acoustic Isogeometric Boundary Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
265
290
.10.1016/j.cma.2013.10.026
30.
Coox
,
L.
,
Atak
,
O.
,
Vandepitte
,
D.
, and
Desmet
,
W.
,
2014
, “An Isogeometric Indirect Boundary Element Method for Helmholtz Problems,” Proceedings of the 26th Conference on Noise and Vibration Engineering (
ISMA2014
),
Leuven, Belgium, Sept. 15–17
.https://pdfs.semanticscholar.org/b2f3/c1166a06b44c36194eb11f52133a4df60f41.pdf
31.
Beer
,
G.
,
Marussig
,
B.
, and
Duenser
,
C.
,
2013
, “
Isogeometric Boundary Element Method for the Simulation of Underground Excavations
,”
Geotechnique Lett.
,
3
(
3
), pp.
108
111
.10.1680/geolett.13.00009
32.
Nguyen
,
B. H.
,
Tran
,
H. D.
,
Anitescu
,
C.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2016
, “
An Isogeometric Symmetric Galerkin Boundary Element Method for Two-Dimensional Crack Problems
,”
Comput. Methods Appl. Mech. Eng.
,
306
, pp.
252
275
.10.1016/j.cma.2016.04.002
33.
An
,
Z.
,
Yu
,
T.
,
Bui
,
T. Q.
,
Wang
,
C.
, and
Trinh
,
N. A.
,
2018
, “
Implementation of Isogeometric Boundary Element Method for 2-D Steady Heat Transfer Analysis
,”
Adv. Eng. Software
,
116
, pp.
36
49
.10.1016/j.advengsoft.2017.11.008
34.
Brebbia
,
C. A.
, and
Dominguez
,
J.
,
1994
,
Boundary Elements: An Introductory Course
,
WIT Press
, Southampton, UK.
35.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1999
, “
Computing Offsets of NURBS Curves and Surfaces
,”
Comput.-Aided Des.
,
31
(
2
), pp.
147
156
.10.1016/S0010-4485(98)00066-9
36.
Greville
,
T.
,
1964
, “
Numerical Procedures for Interpolation by Spline Functions
,”
J. Soc. Ind. Appl. Math.: Ser. B
, 1(1), pp.
53
68
.10.1137/0701005
37.
Guiggiani
,
M.
, and
Casalini
,
P.
,
1987
, “
Direct Computation of Cauchy Principal Value Integrals in Advanced Boundary Elements
,”
Int. J. Numer. Methods Eng.
,
24
(
9
), pp.
1711
1720
.10.1002/nme.1620240908
38.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
, Cambridge, UK.
39.
Yue
,
H.
,
Chen
,
J.
, and
Xu
,
Q.
,
2018
, “
Sloshing Characteristics of Annular Tuned Liquid Damper (ATLD) for Applications in Composite Bushings
,”
Struct. Control Health Monit.
,
25
(
8
), p.
e2184
.10.1002/stc.2184
You do not currently have access to this content.