Water jet peening (WJP) is a mechanical surface strengthening process, which can improve the residual stress (RS) of the peened surface and then improve the fatigue life of components. In this paper, erosion experiments are conducted to investigate the influence of peening parameters on erosion. On this basis, RSs induced by WJP are studied in relation to the peening parameters. In addition, the coupled Eulerian–Lagrangian (CEL) technique is used to model and simulate the dynamic impact process of WJP on Al6061-T6. The influence of peening parameters such as jet pressure p, jet traverse velocity vf, and the number of water jet pass n on the modification of residual stress field (RSF) is examined by simulation and experiment. The influence of incidence angle α and water jet diameter d on RSF is also investigated by simulation. Results show that compressive RS σcrs is a result of the action of water-hammer pressure alone. Furthermore, σcrs increases with an increase in p, n and α. The optimal peening parameters for Al6061-T6 are found to be p = 60 MPa, vf = 2000 mm/min, n = 4, α = 90 deg and d = 2.0 mm. Finally, the depth of compressive RS layer D0 increases greatly with an increase in water jet diameter d and can reach 984 μm.

References

1.
Salko
,
D.
,
1984
, “
Peening by Water
,”
Second International Conference on Shot Peening
(ICSP), Chicago, NJ, May 14–17, pp.
37
38
.
2.
Daniwecz
,
S. R.
, and
Cummings
,
S. D.
,
1999
, “
Characterization of a Water Peening Process
,”
ASME J. Eng. Mater. Technol.
,
121
(
3
), pp.
336
340
.
3.
Arola
,
D.
,
McCain
,
M. L.
,
Kunaporn
,
S.
, and
Ramulu
,
M.
,
2001
, “
Waterjet and Abrasive Waterjet Surface Treatment of Titanium: A Comparison of Surface Texture and Residual Stress
,”
Wear
,
249
(
10–11
), pp.
943
950
.
4.
Ramulu
,
M.
,
Kunaporn
,
S.
,
Jenkins
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
,
2002
, “
Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
118
123
.
5.
Dong, X., Wang, R.-G., and Duan, X.,
2014
, “
Test Research of Water Jet Peening Strengthening
,”
J. China Coal Soc.
,
39
(
3
), pp.
568
573
.
6.
Kunaporn
,
S.
,
Ramulu
,
M.
,
Jenkins
,
M. G.
, and
Hashish
,
M.
,
2004
, “
Residual Stress Induced by Waterjet Peening: A Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
126
(
3
), pp.
333
340
.
7.
Kunaporn
,
S.
,
Ramulu
,
M.
, and
Hashish
,
M.
,
2005
, “
Mathematical Modeling of Ultra-High-Pressure Waterjet Peening
,”
ASME J. Eng. Mater. Technol.
,
127
(
2
), pp.
186
191
.
8.
Rajesh
,
N.
,
Veeraraghavan
,
S.
, and
Babu
,
N. R.
,
2004
, “
A Novel Approach for Modeling of Water Jet Peening
,”
Int. J. Mach. Tools Manuf.
,
44
(
7–8
), pp.
855
863
.
9.
Rajesh
,
N.
, and
Babu
,
N. R.
,
2006
, “
Multidroplet Impact Model for Prediction of Residual Stresses in Water Jet Peening of Materials
,”
Mater. Manuf. Processes
,
21
(
4
), pp.
399
409
.
10.
Hsu
,
C. Y.
,
Liang
,
C. C.
,
Teng
,
T. L.
, and
Nguyen
,
A. T.
,
2013
, “
A Numerical Study on High-Speed Water Jet Impact
,”
Ocean Eng.
,
72
, pp.
98
106
.
11.
Obara
,
T.
,
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
Liquid-Jet Impact on Liquid and Solid Surfaces
,”
Wear
,
186–187
(
Pt. 2
), pp. 388–394.
12.
Oka
,
Y. I.
,
Mihara
,
S.
, and
Miyata
,
H.
,
2007
, “
Effective Parameters for Erosion Caused by Water Droplet Impingement and Applications to Surface Treatment Technology
,”
Wear
,
263
(
1–6
), pp.
386
394
.
13.
Kunaporn
,
S.
,
Chillman
,
A.
,
Ramulu
,
M.
, and
Hashish
,
M.
,
2008
, “
Effect of Waterjet Formation on Surface Preparation and Profiling of Aluminum Alloy
,”
Wear
,
265
(
1–2
), pp.
176
185
.
14.
Huang
,
L.
,
Folkes
,
J.
,
Kinnell
., and
Shipway
,
P. H.
,
2012
, “
Mechanisms of Damage Initiation in a Titanium Alloy Subjected to Water Droplet Impact During Ultra-High Pressure Plain Waterjet Erosion
,”
J. Mater. Process. Technol.
,
212
(
9
), pp.
1906
1915
.
15.
Azhari
,
A.
,
Schindler
,
C.
, and
Li
,
B.
,
2013
, “
Effect of Waterjet Peening on Aluminum Alloy 5005
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
785
795
.
16.
Azhari
,
A.
,
Schindler
,
C.
,
Nkoumbou
,
J.
, and
Kerscher
,
E.
,
2014
, “
Surface Erosion of Carbon Steel 1045 During Waterjet Peening
,”
J. Mater. Eng. Perform.
,
23
(
5
), pp.
1870
1880
.
17.
Azhari
,
A.
,
Schindler
,
C.
,
Hilbert
,
K.
,
Godard
,
C.
, and
Kerscher
,
E.
,
2014
, “
Influence of Waterjet Peening and Smoothing on the Material Surface and Properties of Stainless Steel 304
,”
Surf. Coat. Technol.
,
258
, pp.
1176
1182
.
18.
Xiaohong
,
L.
,
Yiyu
,
L.
, and
Wenying
,
X.
,
2007
,
Water Jet Theory and Its Application in Mining Engineering
,
Chongqing University Press
,
Chongqing, China
, pp.
42
44
.
19.
Xie
,
J.
, and
Rittel
,
D.
,
2017
, “
A Two-Dimensional Model for Metallic Surface Roughness Resulting From Pure Waterjet Peening
,”
Int. J. Eng. Sci.
,
120
, pp.
189
198
.
20.
Han
,
B.
, and
Ju
,
D. Y.
,
2009
, “
Compressive Residual Stress Induced by Water Cavitation Peening: A Finite Element Analysis
,”
Mater. Des.
,
30
(
8
), pp.
3325
3332
.
21.
Hamashima
,
H.
,
Kato
,
Y.
, and
Itoh
,
S.
,
2004
, “
Determination of JWL Parameters for Non-Ideal Explosive
,”
AIP Conf. Proc.
,
706
(
6
), pp.
331
334
.
22.
Anwar
,
S.
,
Axinte
,
D. A.
, and
Becker
,
A. A.
,
2013
, “
Finite Element Modelling of Abrasive Waterjet Milled Footprints
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
180
193
.
23.
Kim
,
J.-S.
,
Nam
,
H.-S.
,
Kim
,
Y.-J.
, and
Kim
,
J.-H.
,
2017
, “
Numerical Study of Laser Shock Peening Effects on Alloy 600 Nozzles With Initial Residual Stresses
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041406
.
24.
Daochun
,
X.
,
Pingfa
,
F.
,
Dingwen
,
Y.
, and
Zhijun
,
W.
,
2012
, “
Constitutive Model of Physical Simulation in High Speed Cutting for Al6061-T6
,”
Trans. Chin. Soc. Agric. Mach.
,
43
(
12
), pp.
273
277
.
You do not currently have access to this content.