This paper presents the high-temperature low-cycle fatigue (HTLCF) behavior of a precipitate strengthened 9Cr martensitic steel, MarBN, designed to provide enhanced creep strength and precipitate stability at high temperature. The strain-controlled test program addresses the cyclic effects of strain-rate and strain-range at 600 °C, as well as tensile stress-relaxation response. A recently developed unified cyclic viscoplastic material model is implemented to characterize the complex cyclic and relaxation plasticity response, including cyclic softening and kinematic hardening effects. The measured response is compared to that of P91 steel, a current power plant material, and shows enhanced cyclic strength relative to P91.
Issue Section:
Materials and Fabrication
Topics:
Creep,
High temperature,
Low cycle fatigue,
Steel,
Stress,
Relaxation (Physics),
Fatigue,
Cycles,
Temperature,
Hardening
References
1.
Abe
, F.
, Taneike
, M.
, and Sawada
, K.
, 2007
, “Alloy Design of Creep Resistant 9Cr Steel Using a Dispersion of Nano-Sized Carbonitrides
,” Int. J. Pressure Vessels Piping
, 84
(1
), pp. 3
–12
.2.
Abe
, F.
, Tabuchi
, M.
, Semba
, H.
, Igarashi
, M.
, Yoshizawa
, M.
, Komai
, N.
, and Fujita
, A.
, 2007
, “Feasibility of MARBN Steel for Application to Thick Section Boiler Components in USC Power Plant at 650 °C
,” 5th International Conference on Advances in Materials Technology for Fossil Power Plants
, Marco Island, FL, Oct. 3-5, pp. 92-106.3.
Barrett
, R. A.
, O'Donoghue
, P. E.
, and Leen
, S. B.
, 2013
, “An Improved Unified Viscoplastic Constitutive Model for Strain-Rate Sensitivity in High Temperature Fatigue
,” Int. J. Fatigue
, 48
, pp. 192
–204
.4.
Abe
, F.
, Tabuchi
, M.
, Kondo
, M.
, and Tsukamoto
, S.
, 2007
, “Suppression of Type IV Fracture and Improvement of Creep Strength of 9Cr Steel Welded Joints by Boron Addition
,” Int. J. Pressure Vessels Piping
, 84
(1
), pp. 44
–52
.5.
Abe
, F.
, Tabuchi
, M.
, Tsukamoto
, S.
, and Shirane
, T.
, 2010
, “Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels
,” Int. J. Pressure Vessels Piping
, 87
(11
), pp. 598
–604
.6.
Albert
, S. K.
, Kondo
, M.
, Tabuchi
, M.
, Yin
, F.
, Sawada
, K.
, and Abe
, F.
, 2005
, “Improving the Creep Properties of 9Cr-3W-3Co-NbV Steels and Their Weld Joints by the Addition of Boron
,” Metall. Mater. Trans. A
, 36
(2
), pp. 333
–343
.7.
Barrett
, R.
, Farragher
, T.
, Hyde
, C.
, O'Dowd
, N.
, O'Donoghue
, P.
, and Leen
, S.
, 2014
, “A Unified Viscoplastic Model for High Temperature Low Cycle Fatigue of Service-Aged P91 Steel
,” ASME J. Pressure Vessel Technol.
, 136
(2
), p. 021402
.8.
Li
, L.
, MacLachlan
, R.
, Jepson
, M. A.
, and Thomson
, R.
, 2013
, “Microstructural Evolution of Boron Nitride Particles in Advanced 9Cr Power Plant Steels
,” Metall. Mater. Trans. A
, 44
(7
), pp. 3411
–3418
.9.
Farragher
, T.
, Scully
, S.
, O'Dowd
, N.
, Hyde
, C.
, and Leen
, S.
, 2014
, “High Temperature, Low Cycle Fatigue Characterization of P91 Weld and Heat Affected Zone Material
,” ASME J. Pressure Vessel Technol.
, 136
(2
), p. 021403
.10.
Saad
, A. A.
, 2012
, Cyclic Plasticity and Creep of Power Plant Materials
, Ph.D. thesis, University of Nottingham
, Nottingham, UK
.11.
Saad
, A. A.
, Sun
, W.
, Hyde
, T. H.
, and Tanner
, D. W. J.
, 2011
, “Cyclic Softening Behaviour of a P91 Steel Under Low Cycle Fatigue at High Temperature
,” Proc. Eng.
, 10
, pp. 1103
–1108
.12.
Saad
, A.
, Hyde
, C.
, Sun
, W.
, and Hyde
, T.
, 2011
, “Thermal-Mechanical Fatigue Simulation of a P91 Steel in a Temperature Range of 400–600 °C
,” Mater. High Temp.
, 28
(3
), pp. 212
–218
.13.
Chaboche
, J.-L.
, and Rousselier
, G.
, 1983
, “On the Plastic and Viscoplastic Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel
,” ASME J. Pressure Vessel Technol.
, 105
(2
), pp. 159
–164
.14.
Chaboche
, J.
, and Rousselier
, G.
, 1983
, “On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept
,” ASME J. Pressure Vessel Technol.
, 105
(2
), pp. 153
–158
.15.
Saad
, A. A.
, Hyde
, C. J.
, Sun
, W.
, and Hyde
, T. H.
, 2011
, “Thermal-Mechanical Fatigue Simulation of a P91 Steel in a Temperature Range of 400–600 °C
,” Mater. High Temp.
, 28
(3
), pp. 212
–218
.16.
Frederick
, C. O.
, and Armstrong
, P.
, 2007
, “A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Mater. High Temp.
, 24
(1
), pp. 1
–26
.17.
Barrett
, R.
, Farragher
, T.
, O'Dowd
, N.
, O'Donoghue
, P.
, and Leen
, S.
, 2014
, “Multiaxial Cyclic Viscoplasticity Model for High Temperature Fatigue of P91 Steel
,” Mater. Sci. Technol.
, 30
(1
), pp. 67
–74
.18.
Hyde
, C.
, Sun
, W.
, and Leen
, S.
, 2010
, “Cyclic Thermo-Mechanical Material Modelling and Testing of 316 Stainless Steel
,” Int. J. Pressure Vessels Piping
, 87
(6
), pp. 365
–372
.19.
Zhan
, Z.
, 2004
, A Study of Creep-Fatigue Interaction in a New Nickle-Based Superalloy
, University of Portsmouth
, Portsmouth, UK
.20.
Maruyama
, K.
, Sawada
, K.
, and Koike
, J.-I.
, 2001
, “Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel
,” ISIJ Int.
, 41
(6
), pp. 641
–653
.21.
Williams
, J.
, and Fatemi
, A.
, 2007
, “Fatigue Performance of Forged Steel and Ductile Cast Iron Crankshafts
,” SAE
Technical Paper 2007-01-1001.22.
Tabuchi
, M.
, Kondo
, M.
, Kubo
, K.
, and Albert
, S. K.
, 2004
, “Improvement of Type IV Creep Cracking Resistance of 9Cr Heat Resisting Steels by Boron Addition
,” OMNI
, 3
(3
), pp. 1
–11
.23.
Abe
, F.
, 2008
, “Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-Supercritical Power Plants
,” Sci. Technol. Adv. Mater.
, 9
(1
), p. 013002
.24.
Sakuraya
, K.
, Okada
, H.
, and Abe
, F.
, 2006
, “BN Type Inclusions Formed in High Cr Ferritic Heat Resistant Steel
,” Energy Mater.
, 1
(3
), pp. 158
–166
.25.
Sauzay
, M.
, Brillet
, H.
, Monnet
, I.
, Mottot
, M.
, Barcelo
, F.
, Fournier
, B.
, and Pineau
, A.
, 2005
, “Cyclically Induced Softening Due to Low-Angle Boundary Annihilation in a Martensitic Steel
,” Mater. Sci. Eng. A
, 400
, pp. 241
–244
.26.
Sauzay
, M.
, Fournier
, B.
, Mottot
, M.
, Pineau
, A.
, and Monnet
, I.
, 2008
, “Cyclic Softening of Martensitic Steels at High Temperature—Experiments and Physically Based Modelling
,” Mater. Sci. Eng. A
, 483–484
, pp. 410
–414
.27.
Farragher
, T. P.
, Scully
, S.
, O'Dowd
, N. P.
, and Leen
, S. B.
, 2013
, “Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,” Int. J. Fatigue
, 49
, pp. 50
–61
.28.
Barrett
, R. A.
, O'Donoghue
, P. E.
, and Leen
, S. B.
, 2014
, “A Dislocation-Based Model for High Temperature Cyclic Viscoplasticity of 9–12Cr Steels
,” Comput. Mater. Sci.
, 92
, pp. 286
–297
.Copyright © 2016 by ASME
You do not currently have access to this content.