In this paper, the J-R curves of two cracks (A508 HAZ crack 2 and A508/Alloy52Mb interface crack 3) located at the weakest region in an Alloy52M dissimilar metal welded joint (DMWJ) for connecting pipe-nozzle of nuclear pressure vessel have been measured by using single edge-notched bend (SENB) specimens with different crack depths a/W (different constraint). Based on the modified T-stress constraint parameter τ*, the equations of constraint-dependent J-R curves for the crack 2 and crack 3 were obtained. The predicted J-R curves using different constraint equations derived from the three pairs of crack growth amount all agree with the experimental J-R curves. The results show that the modified T-stress approach for obtaining constraint-dependent J-R curves of homogeneous materials can also be used for the DMWJs with highly heterogeneous mechanical properties (local strength mismatches) in nuclear power plants. The use of the constraint-dependent J-R curves may increase the accuracy of structural integrity design and assessment for the DMWJs of nuclear pressure vessels.

References

1.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2006
, “
Bending Modified J-Q Theory and Crack-Tip Constraint Quantification
,”
Int. J. Fract.
,
141
(
1–2
), pp.
115
134
.10.1007/s10704-006-0068-5
2.
Joyce
,
J. A.
,
Hackett
,
E. M.
, and
Roe
,
C.
,
1993
, “
Effect of Crack Depth and Mode of Loading on the J–R Curve Behavior of a High-Strength Steel
,”
Constraint Effects in Fracture, ASTM STP 1171
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
239
263
.
3.
Joyce
,
J. A.
, and
Link
,
R. E.
,
1995
, “
Effects of Constraint on Upper Shelf Fracture Toughness
,”
Fatigue and Fracture Mechanics: 26th Volume, ASTM STP 1256
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
142
177
.10.1520/STP16383S
4.
Joyce
,
J. A.
, and
Link
,
R. E.
,
1997
, “
Application of Two Parameter Elastic-Plastic Fracture Mechanics to Analysis of Structures
,”
Eng. Fract. Mech.
,
57
(
4
), pp.
431
446
.10.1016/S0013-7944(97)00030-1
5.
Neimitz
,
A.
,
Dziob
,
I.
, and
Galkiewicz
,
J.
,
2004
, “
A Study of Stable Crack Growth Using Experimental Methods, Finite Elements and Fractography
,”
Eng. Fract. Mech.
,
71
(
9–10
), pp.
1325
1355
.10.1016/S0013-7944(03)00169-3
6.
Kirk
,
M. T.
,
Koppenhoefer
,
K. C.
, and
Shih
,
C. F.
,
1993
, “
Effect of Constraint on Specimen Dimensions Needed to Obtain Structurally Relevant Toughness Measures
,”
Constraint Effects in Fracture, ASTM STP 1171
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
79
104
.10.1520/STP18024S
7.
Towers
,
O. L.
, and
Garwood
,
S. J.
,
1986
, “
Influence of Crack Depth on Resistance Curves for Three Point Bend Specimens in HY130
,”
Fracture Mechanics: 7th Volume, ASTM STP 905
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
454
484
.10.1520/STP17412S
8.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2006
, “
Application of Constraint Corrected J–R Curves to Fracture Analysis of Pipelines
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
581
589
.10.1115/1.2349571
9.
O'Dowd
,
N. P.
, and
Shih
,
C. F.
,
1991
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-І. Structure of Fields
,”
J. Mech. Phys. Solids
,
39
(
8
), pp.
989
1015
.10.1016/0022-5096(91)90049-T
10.
O'Dowd
,
N. P.
, and
Shih
,
C. F.
,
1992
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-ІІ. Fracture Applications
,”
J. Mech. Phys. Solids
,
40
(
5
), pp.
939
963
.10.1016/0022-5096(92)90057-9
11.
O'Dowd
,
N. P.
, and
Shih
,
C. F.
,
1994
, “
Two-Parameter Fracture Mechanics: Theory and Applications
,”
Fracture Mechanics: 24th Volume, ASTM STP 1207
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
21
47
.10.1520/STP13698S
12.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
,
1993
, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Eng. Fract. Mech.
,
45
(
1
), pp.
1
20
.10.1016/0013-7944(93)90002-A
13.
Chao
,
Y. J.
,
Yang
,
S.
, and
Sutton
,
M. A.
,
1994
, “
On the Fracture of Solids Characterized by One or Two Parameters: Theory and Practice
,”
J. Mech. Phys. Solids
,
42
(
4
), pp.
629
647
.10.1016/0022-5096(94)90055-8
14.
Betegón
,
C.
, and
Hancock
,
J. W.
,
1991
, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
104
110
.10.1115/1.2897135
15.
Wang
,
Y. Y.
, and
Parks
,
D. M.
,
1995
, “
Limit of J-T Characterization of Elastic-Plastic Crack-Tip Fields
,”
Constraint Effects in Fracture Theory and Application: Second Volume, ASTM STP 1244
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
43
67
.
16.
Chao
,
Y. J.
, and
Zhu
,
X. K.
,
1998
, “
J-A2 Characterization of Crack-Tip Fields: Extent of J-A2 Dominance and Size Requirements
,”
Int. J. Fract.
,
89
(
3
), pp.
285
307
.10.1023/A:1007487911376
17.
Chao
,
Y. J.
,
Zhu
,
X. K.
,
Kim
,
Y.
,
Lam
,
P. S.
,
Pechersky
,
M. J.
, and
Morgan
,
M. J.
,
2004
, “
Characterization of Crack-Tip Fields and Constraints for Bending Specimens Under Large-Scale Yielding
,”
Int. J. Fract.
,
127
(
3
), pp.
283
302
.10.1023/B:FRAC.0000036849.12397.6c
18.
Zhou
,
D. W.
,
2011
, “
Measurement and Modelling of R-Curves for Low-Constraint Specimens
,”
Eng. Fract. Mech.
,
78
(
3
), pp.
605
622
.10.1016/j.engfracmech.2010.08.019
19.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
111
114
.
20.
Larsson
,
S. G.
, and
Carlsson
,
A. J.
,
1973
, “
Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
,
21
(
4
), pp.
263
277
.10.1016/0022-5096(73)90024-0
21.
Rice
,
J. R.
,
1974
, “
Limitations to the Small Scale Yielding Approximation for Crack Tip Plasticity
,”
J. Mech. Phys. Solids
,
22
(
1
), pp.
17
26
.10.1016/0022-5096(74)90010-6
22.
Bilby
,
B. A.
,
Cardew
,
G. E.
, and
Goldthorpe
,
M. R.
,
1986
, “
A Finite Element Investigation of the Effect of Specimen Geometry on the Fields of Stress and Strain at the Tips of Stationary Cracks
,” Size Effects in Fracture,
Proceedings of a Seminar Held at RAE Farnborough
, Farnborough, UK, Dec.12–15, Institution of Mechanical Engineers,
London, UK
.
23.
Wang
,
X.
,
2003
, “
Elastic T-Stress Solutions for Semi-Elliptical Surface Cracks in Finite Thickness Plates
,”
Eng. Fract. Mech.
,
70
(
6
), pp.
731
756
.10.1016/S0013-7944(02)00081-4
24.
Parks
,
D. M.
,
1992
, “
Advances in Characterization of Elastic-Plastic Crack-Tip Fields
,”
Topics in Fracture and Fatigue
,
A. S.
Argon
, ed.,
Springer Verlag
, Berlin, Germany, pp.
59
98
.10.1007/978-1-4612-2934-6_2
25.
Betegón
,
C.
, and
Peñuelas
,
I.
,
2006
, “
A Constraint Based Parameter for Quantifying the Crack Tip Stress Fields in Welded Joints
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1865
1877
.10.1016/j.engfracmech.2006.02.012
26.
Al-Ani
,
A. M.
, and
Hancock
,
J. W.
,
1991
, “
J-Dominance of Short Cracks in Tension and Bending
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
23
43
.10.1016/0022-5096(91)90029-N
27.
Du
,
Z. Z.
, and
Hancock
,
J. W.
,
1991
, “
The Effect of Non-Singular Stresses on Crack-Tip Constraint
,”
J. Mech. Phys. Solids
,
39
(
4
), pp.
555
567
.10.1016/0022-5096(91)90041-L
28.
Wang
,
Y. Y.
,
1993
, “
On the Two-Parameter Characterization of Elastic-Plastic Crack Front Fields in Surface Cracked Plates
,”
Constraint Effects in Fracture, ASTM STP 1171
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
120
138
.10.1520/STP18026S
29.
Zhang
,
Z. L.
,
Thaulow
,
C.
, and
Ødegård
,
J.
,
2000
, “
A Complete Gurson Model Approach for Ductile Fracture
,”
Eng. Fract. Mech.
,
67
(
2
), pp.
155
168
.10.1016/S0013-7944(00)00055-2
30.
Nyhus
,
B.
,
Zhang
,
Z. L.
, and
Thaulow
,
C.
,
2002
, “
Normalisation of Material Crack Resistance Curves by the T-Stress
,”
Proceeding of 14th European Conference on Fracture
,
Cracow, Poland
, Sept. 8–13, pp.
85
94
.
31.
Rodriguez
,
C.
,
Belzunce
,
F. J.
, and
Garcia
,
T. E.
,
2013
, “
Constraint Dependence of the Fracture Toughness of Reduced Activation Ferritic-Martensitic Eurofer Steel Plates
,”
Eng. Fract. Mech.
,
103
(
1
), pp.
60
68
.10.1016/j.engfracmech.2012.05.003
32.
Wang
,
J.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2013
, “
Derivation of Constraint-Dependent J-R Curves Based on Modified T-Stress Parameter and GTN Model for a Low-Alloy Steel
,”
Int. J. Fract.
,
183
(
2
), pp.
155
168
.10.1007/s10704-013-9884-6
33.
Wang
,
H. T.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2013
, “
Fracture Mechanism of a Dissimilar Metal Welded Joint in Nuclear Power Plant
,”
Eng. Failure Anal.
,
28
(
1
), pp.
134
148
.10.1016/j.engfailanal.2012.10.005
34.
Wang
,
H. T.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
,
Liu
,
C. J.
, and
Tu
,
S. T.
,
2012
, “
Local Mechanical Properties and Microstructures of Alloy52M Dissimilar Metal Welded Joint Between A508 Ferritic Steel and 316L Stainless Steel
,”
Adv. Mater. Res.
,
509
(
2
), pp.
103
110
.10.4028/www.scientific.net/AMR.509.103
35.
Wang
,
H. T.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2013
, “
An Experimental Investigation of Local Fracture Resistance and Crack Growth Paths in a Dissimilar Metal Welded Joint
,”
Mater. Des.
,
44
(
2
), pp.
179
189
.10.1016/j.matdes.2012.07.067
36.
ASTM E1820-08a
,
2008
,
Standard Test Method for Measurement of Fracture Toughness
,
American Society for Testing and Materials
,
Philadelphia, PA
.
37.
Hancock
,
J. W.
,
Reuter
,
W. G.
, and
Parks
,
D. M.
,
1993
, “
Constraint and Toughness Parameterized by T
,”
Constraint Effects in Fracture, ASTM STP 1171
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
21
40
.10.1520/STP18021S
38.
Zhu
,
X. K.
, and
Jang
,
S. K.
,
2001
, “
J-R Curves Corrected by Load-Independent Constraint Parameter in Ductile Crack Growth
,”
Eng. Fract. Mech.
,
68
(
3
), pp.
285
301
.10.1016/S0013-7944(00)00100-4
39.
Shih
,
C. F.
,
1983
, “
Tables of Hutchinson-Rice-Rosengren Singular Field Quantities
,” Materials Research Laboratory, Brown University, Providence, Rhode Island, Report No. MRL E-147.
40.
Yoshida
,
1990
, “
Fracture Toughness of Weld Metals in Steel Piping for Nuclear Power Plants
,”
Int. J. PressureVessels Piping
,
43
(
1–3
), pp.
273
284
.10.1016/0308-0161(90)90107-S
You do not currently have access to this content.