Conventional time-temperature-parameter (TTP) methods often overestimate long-term rupture life of creep strength enhanced ferritic steels. Decrease in activation energy Q for rupture life in long-term creep is the cause of the overestimation, since the TTP methods cannot deal with the change in Q. Creep rupture data of a heat of Gr.122 steel (up to 26,200 h) were divided into several data sets so that Q was unique in each divided data set. Then a TTP method was applied to each divided data set for rupture life prediction. This is the procedure of multiregion analysis of creep rupture data. The predicted rupture lives have been reported in literature. Long-term rupture lives (up to 51,400 h) of the same heat of the steel have been published in 2013. The multiregion analysis of creep rupture life can predict properly the long-term lives reported. Stress and temperature dependences of rupture life show similar behavior among different heats. Therefore, database on results of the multiregion analyses of various heats of the steel is helpful for rupture life estimation of another heat.

References

1.
Maruyama
,
K.
,
Sawada
,
K.
, and
Koike
,
J.
,
2001
, “
Strengthening Mechanism of Creep Resistant Tempered Martensitic Steel
,”
ISIJ Int.
,
41
(6), pp.
641
653
.10.2355/isijinternational.41.641
2.
Danielsen
,
H. K.
, and
Hald
,
J.
,
2006
, “
Behaviour of Z Phase in 9-12%Cr Steels
,”
Energy Mater.
,
1
(1), pp.
49
57
.10.1179/174892306X99732
3.
Masuyama
,
F.
,
2010
, “
Advanced Technology in Creep Life Prediction and Damage Evaluation for Creep Strength Enhanced Ferritic Steels
,”
Proceedings of High-Temperature Defect Assessment-5, European Technology Development
,
Surry, UK
, June 23–25, CD-ROM.
4.
Maruyama
,
K.
,
2008
, “
Fracture Mechanism Map and Fundamental Aspects of Creep Fracture
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
350
364
.
5.
Kimura
,
K.
, and
Takahashi
,
Y.
,
2012
, “
Evaluation of Long-Term Creep Strength of ASME Grade 91, 92, and 122 Type Steels
,”
ASME
Paper No. PVP2012-78323.10.1115/PVP2012-78323
6.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
,
2004
, “
Influence of Stress on Degradation and Life Prediction on High Strength Ferritic Steels
,”
ASME
Paper No. PVP2004-2566.10.1115/PVP2004-2566
7.
Kimura
,
K.
,
2005
, “
Assessment of Long-Term Creep Strength and Review of Allowable Stress of High Cr Ferritic Creep Resistant Steels
,”
ASME
Paper No. PVP2005-71039.10.1115/PVP2005-71039
8.
Kimura
,
K.
,
2006
, “
Creep Strength Assessment and Review of Allowable Tensile Stress of Creep Strength Enhanced Ferritic Steels in Japan
,”
ASME
Paper No. PVP2006-ICPVT-11-93294.10.1115/PVP2006-ICPVT-11-93294
9.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2009
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Creep and Fracture in High Temperature Components
,
I. A.
Shibli
, and
S. R.
Holdsworth
, eds.,
DEStech Publications
,
Lancaster, PA
, pp.
56
67
.
10.
Maruyama
,
K.
,
Baba
,
E.
,
Yokokawa
,
K.
,
Kushima
,
H.
, and
Yagi
,
K.
,
1994
, “
Errors of Creep Rupture Life Extrapolated by Time-Temperature Parameter Methods
,”
Tetsu-to-Hagane
,
80
, pp.
336
341
.
11.
Maruyama
,
K.
,
Ghassemi Armaki
,
H.
, and
Yoshimi
,
K.
,
2007
, “
Multiregion Analysis of Creep Rupture Data of 316 Stainless Steel
,”
Int. J. Press. Vessels Pip.
,
84
(3), pp.
171
176
.10.1016/j.ijpvp.2006.09.015
12.
Maruyama
,
K.
, and
Yoshimi
,
K.
,
2007
, “
Influence of Data Analysis Method and Allowable Stress Criterion on Allowable Stress of Gr.122 Heat Resistant Steel
,”
ASME J. Pressure Vessel Technol.
,
129
(3), pp.
449
453
.10.1115/1.2748825
13.
Maruyama
,
K.
,
Ghassemi Armaki
,
H.
,
Chen
,
R. P.
,
Yoshimi
,
K.
,
Yoshizawa
,
M.
, and
Igarashi
,
M.
,
2010
, “
Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels
,”
Int. J. Press. Vessels Pip.
,
87
(6), pp.
276
281
.10.1016/j.ijpvp.2010.03.012
14.
National Institute for Materials Science
,
2013
, “
Data Sheets of the Elevated-Temperature Properties of 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Pipe for High Temperature Service and 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Plate for Power Plants and 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Tube for Power Boilers
,”
NIMS Creep Data Sheet No. 51A
,
NIMS
,
Tsukuba, Japan
.
15.
Kimura
,
K.
,
2005
, “
Activity Report of WG1
,”
Survey Report on Rational Determination of Safety Margin and Allowable Stress
,
Iron Steel Institute Japan
,
Tokyo, Japan
, pp.
74
86
.
16.
Masuyama
,
F.
,
1995
, “
ASME Code Approval for NF616 and HCM12A
,”
New Steels for Advanced Plant Up to 620 °C
,
E.
Metcalfe
, ed.,
EPRI
,
Palo Alto, CA
, pp.
98
108
.
17.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2014
, “
Evaluation of Long-Term Creep Rupture Life of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
,”
Proceedings of 7th International Conference on Advances in Materials Technology for Fossil Power Plants
,
EPRI, Palo Alto, CA, October 22–25
.
18.
National Institute for Materials Science
,
2006
, “
Data Sheets of the Elevated-Temperature Properties of 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Pipe for High Temperature Service and 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Plate for Power Plants and 11Cr-2W-0.4Mo-1Cu-Nb-V Stainless Steel Tube for Power Boilers
,”
NIMS Creep Data Sheet No. 51
,
NIMS
,
Tsukuba, Japan
.
You do not currently have access to this content.