Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Floating vertical-axis wind turbines (VAWTs) offer certain advantages over floating horizontal-axis wind turbines (HAWTs), particularly in terms of the potential to lower the cost of energy. In this study, a 5 MW floating VAWT concept with three straight blades and a semi-submersible hull deployed in a water depth of 42 m was presented. In addition, the experimental setup is introduced, and calibration tests are also performed to validate the physical model system. Subsequently, the aerodynamic damping and gyroscopic moment effects were investigated by wind/wave basin model tests with a scale ratio of 1/50. Results indicate that aerodynamic damping can suppress the fluctuations of the platform's surge and pitch motion at their respective resonance frequencies and tends to increase with wind speed at below-rated wind speed. Additionally, surge-induced and pitch-induced aerodynamic damping hardly affect the wave frequency response. Meanwhile, the surge natural frequency is substantially altered due to the wind loads. The rotating rotor and pitch motion of the platform together excite significant gyroscopic moments, leading to noticeable oscillations in roll motion. Additionally, there is an increasing trend in the gyroscopic moment effect with rotational speed. During normal operation of the floating VAWT, aerodynamic damping and gyroscopic moment together influence hull roll/pitch motions. Overall, this study contributes to providing valuable insights into the motion characteristics of floating VAWTs.

References

1.
Zhao
,
Z.
,
Wang
,
D.
,
Wang
,
T.
,
Shen
,
W.
,
Liu
,
H.
, and
Chen
,
M.
,
2022
, “
A Review: Approaches for Aerodynamic Performance Improvement of Lift-Type Vertical Axis Wind Turbine
,”
Sustain. Energy Technol. Assess.
,
49
, p.
101789
.
2.
Paulsen
,
U. S.
,
Borg
,
M.
,
Madsen
,
H. A.
,
Pedersen
,
T. F.
,
Hattel
,
J.
,
Ritchie
,
E.
,
Ferreira
,
C. S.
,
Svendsen
,
H.
,
Berthelsen
,
P. A.
, and
Smadja
,
C.
,
2015
, “
Outcomes of the Deep Wind Conceptual Design
,”
Energy Proc.
,
80
, pp.
329
341
.
3.
Shires
,
A.
,
2013
, “
Design Optimisation of an Offshore Vertical Axis Wind Turbine
,”
Proc. Inst. Civil Eng. Energy
,
166
(
1
), pp.
7
18
.
4.
Cahay
,
M.
,
Luquiau
,
E.
,
Smadja
,
C.
, and
Silvert
,
F.
,
2011
, “
Use of a Vertical Wind Turbine in an Offshore Floating Wind Farm
,”
Offshore Technology Conference
,
Houston, TX
.
5.
Maimon
,
A. D.
,
2020
, “
Floating Offshore Wind Turbines-Technology and Potential
,”
Ann. “Dunarea de Jos” University of Galati. Fascicle XI Shipbuild.
,
43
, pp.
89
94
.
6.
Ghigo
,
A.
,
Faraggiana
,
E.
,
Giorgi
,
G.
,
Mattiazzo
,
G.
, and
Bracco
,
G.
,
2024
, “
Floating Vertical Axis Wind Turbines for Offshore Applications Among Potentialities and Challenges: A Review
,”
Renew. Sustain. Energy Rev.
,
193
, p.
114302
.
7.
Chen
,
J.
,
Duan
,
F.
, and
Hu
,
Z.
,
2017
, “
Experimental Investigation of Aerodynamic Damping Effects on a Semi-submersible Floating Offshore Wind Turbine
,”
The 27th International Ocean and Polar Engineering Conference
, Paper No. ISOPE-I-17-011.
8.
Salehyar
,
S.
, and
Zhu
,
Q.
,
2015
, “
Aerodynamic Dissipation Effects on the Rotating Blades of Floating Wind Turbines
,”
Renew. Energy
,
78
, pp.
119
127
.
9.
Liu
,
X.
,
Lu
,
C.
,
Li
,
G.
,
Godbole
,
A.
, and
Chen
,
Y.
,
2017
, “
Effects of Aerodynamic Damping on the Tower Load of Offshore Horizontal Axis Wind Turbines
,”
Appl. Energy
,
204
, pp.
1101
1114
.
10.
Wen
,
B.
,
Jiang
,
Z.
,
Li
,
Z.
,
Peng
,
Z.
,
Dong
,
X.
, and
Tian
,
X.
,
2022
, “
On the Aerodynamic Loading Effect of a Model Spar-Type Floating Wind Turbine: An Experimental Study
,”
Renew. Energy
,
184
, pp.
306
319
.
11.
Yang
,
C.
,
Xiao
,
L.
,
Chen
,
P.
, and
Cheng
,
Z.
,
2023
, “
Effects of Controller Dynamics on Aerodynamic Damping of a Semi-Submersible Floating Wind Turbine
,”
The 42nd International Conference on Ocean, Offshore and Arctic Engineering
,
Melbourne, Australia
.
12.
Cheng
,
Z.
, and
Zhang
,
P.
,
2017
, “
Characteristic Aerodynamic Loads and Load Effects on the Dynamics of a Floating Vertical Axis Wind Turbine
,”
Trans. Tianjin Univ.
,
23
(
6
), pp.
555
561
.
13.
Cheng
,
Z.
,
Madsen
,
H. A.
,
Gao
,
Z.
, and
Moan
,
T.
,
2016
, “
Numerical Study on Aerodynamic Damping of Floating Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
,
753
(
10
), p.
102001
.
14.
Liu
,
L.
,
Guo
,
Y.
,
Zhao
,
H.
, and
Tang
,
Y.
,
2017
, “
Motions of a 5 MW Floating VAWT Evaluated by Numerical Simulations and Model Tests
,”
Ocean Eng.
,
144
, pp.
21
34
.
15.
Høeg
,
C. E.
, and
Zhang
,
Z.
,
2021
, “
The Influence of Gyroscopic Effects on Dynamic Responses of Floating Offshore Wind Turbines in Idling and Operational Conditions
,”
Ocean Eng.
,
227
, p.
108712
.
16.
Pezeshki
,
H.
,
Pavlou
,
D.
,
Adeli
,
H.
, and
Siriwardane
,
S.
,
2024
, “
Gyroscopic Effects of the Spinning Rotor-Blades Assembly on Dynamic Response of Offshore Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
247
, p.
105698
.
17.
Mostafa
,
N.
,
Murai
,
M.
,
Nishimura
,
R.
,
Fujita
,
O.
, and
Nihei
,
Y.
,
2012
, “
Study of Motion of Spar-Type Floating Wind Turbines in Waves With Effect of Gyro Moment at Inclination
,”
J. Nav. Archit. Mar. Eng.
,
9
(
1
), pp.
67
79
.
18.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2013
, “
A Nonlinear Computational Model of Floating Wind Turbines
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121103
.
19.
Chen
,
J.
,
Hu
,
Z.
,
Wan
,
D.
, and
Xiao
,
Q.
,
2018
, “
Comparisons of the Dynamical Characteristics of a Semi-Submersible Floating Offshore Wind Turbine Based on Two Different Blade Concepts
,”
Ocean Eng.
,
153
, pp.
305
318
.
20.
Yang
,
C.
,
Xiao
,
L.
,
Deng
,
S.
,
Chen
,
P.
,
Liu
,
L.
, and
Cheng
,
Z.
,
2024
, “
An Experimental Study on the Aerodynamic-Induced Effects of a Semi-Submersible Floating Wind Turbine
,”
Renew. Energy
,
222
, p.
119930
.
21.
Blusseau
,
P.
, and
Patel
,
M. H.
,
2012
, “
Gyroscopic Effects on a Large Vertical Axis Wind Turbine Mounted on a Floating Structure
,”
Renew. Energy
,
46
, pp.
31
42
.
22.
Ikoma
,
T.
,
Tan
,
L.
,
Moritsu
,
S.
,
Aida
,
Y.
, and
Masuda
,
K.
,
2021
, “
Motion Characteristics of a Barge-Type Floating Vertical-Axis Wind Turbine With Moonpools
,”
Ocean Eng.
,
230
, p.
109006
.
23.
Rajeswari
,
K.
, and
Nallayarasu
,
S.
,
2021
, “
Experimental and Numerical Investigation on the Suitability of Semi-Submersible Floaters to Support Vertical Axis Wind Turbine
,”
Ships Offshore Struct.
,
17
(
8
), pp.
1743
1754
.
24.
Zheng
,
H.-D.
,
Zheng
,
X. Y.
,
Lei
,
Y.
,
Li
,
D.-A.
, and
Ci
,
X.
,
2022
, “
Experimental Validation on the Dynamic Response of a Novel Floater Uniting a Vertical-Axis Wind Turbine With a Steel Fishing Cage
,”
Ocean Eng.
,
243
, p.
110257
.
25.
Deng
,
W.
,
Guo
,
Y.
,
Liu
,
L.
,
Li
,
Y.
,
Jiang
,
Y.
, and
Xie
,
P.
,
2023
, “
Dynamic Response Analysis of a Floating Vertical Axis Wind Turbine With Helical Blades Based on the Model Test
,”
Ocean Eng.
,
273
, p.
113930
.
26.
Cheng
,
Z.
,
Madsen
,
H. A.
,
Gao
,
Z.
, and
Moan
,
T.
,
2017
, “
Effect of the Number of Blades on the Dynamics of Floating Straight-Bladed Vertical Axis Wind Turbines
,”
Renew. Energy
,
101
, pp.
1285
1298
.
27.
Yang
,
C.
,
Chen
,
P.
,
Cheng
,
Z.
,
Xiao
,
L.
,
Chen
,
J.
, and
Liu
,
L.
,
2023
, “
Aerodynamic Damping of a Semi-Submersible Floating Wind Turbine: An Analytical, Numerical and Experimental Study
,”
Ocean Eng.
,
281
, p.
114826
.
28.
Jiang
,
Y.
,
Cheng
,
Z.
,
Chen
,
P.
,
Chai
,
W.
, and
Xiao
,
L.
,
2023
, “
Performance-Scaled Rotor Design Method for Model Testing of Floating Vertical Axis Wind Turbines in Wave Basins
,”
Renew. Energy
,
219
, p.
119425
.
29.
Jiang
,
Y.
,
Chen
,
P.
,
Wang
,
S.
,
Cheng
,
Z.
, and
Xiao
,
L.
,
2024
, “
Dynamic Responses of a 5 MW Semi-Submersible Floating Vertical-Axis Wind Turbine: A Model Test Study in the Wave Basin
,”
Ocean Eng.
,
296
, p.
117000
.
30.
DNV
,
2014
, “Environmental Conditions and Environmental Loads,” Recommend Practice DNV-RP-C205.
You do not currently have access to this content.