Abstract

Thin porous plates serve as an effective model for the construction of breakwater. Thus, the problem involving oblique wave interaction with a tunnel in the presence of a submerged horizontal porous plate over a trench-type bottom is investigated. In this article, for the mathematical formulation of the physical model, water wave potentials are defined using Havelock’s expansions and flow past over porous structure is modeled based on Darcy’s law. The advantage of the trench type of bottom and horizontal plate is studied through the numerical results of forces on the tunnel. The study reveals that more energy loss and less force on the tunnel are obtained if the porous effect parameter of the plate or the length of the plate is increased up to a moderated value of these parameters. Compared to the case without porous plate and trench-type bottom topography, there are significant changes in forces due to this porous breakwater and trench-type bottom topography. In addition, from the present results, it may be noted that the load on the submerged tunnel is reduced by adding a submerged horizontal porous plate and asymmetric trench, which is helpful in understanding the role of porous breakwaters and trenches in applications to ocean and coastal engineering.

References

1.
Linton
,
C. M.
,
2001
, “
The Finite Dock Problem
,”
Zeitschrift für angewandte Mathematik und Physik (ZAMP)
,
52
(
4
), pp.
640
656
.
2.
Choudhary
,
A.
, and
Martha
,
S. C.
,
2017
, “
Approximate Solutions to Some Problems of Scattering of Surface Water Waves by the Vertical Barrier
,”
Sadhana
,
42
(
5
), pp.
759
768
.
3.
Wang
,
L. X.
,
Deng
,
Z. Z.
,
Wang
,
C.
, and
Wang
,
P.
,
2018
, “
Scattering of Oblique Water Waves by Two Unequal Surface-Piercing Vertical Thin Plates With Stepped Bottom Topography
,”
China Ocean Eng.
,
32
(
5
), pp.
524
535
.
4.
Liu
,
Y.
,
Li
,
Y. C.
,
Teng
,
B.
, and
Dong
,
S.
,
2008
, “
Wave Motion Over a Submerged Breakwater With an Upper Horizontal Porous Plate and a Lower Horizontal Solid Plate
,”
Ocean. Eng.
,
35
(
16
), pp.
1588
1596
.
5.
Behera
,
H.
, and
Sahoo
,
T.
,
2015
, “
Hydroelastic Analysis of Gravity Wave Interaction With the Submerged Horizontal Flexible Porous Plate
,”
J. Fluids Struct.
,
54
, pp.
643
660
.
6.
Das
,
S.
, and
Bora
,
S. N.
,
2018
, “
Oblique Water Wave Damping by Two Submerged Thin Vertical Porous Plates of Different Heights
,”
Comput. Appl. Math.
,
37
(
3
), pp.
3759
3779
.
7.
Sasmal
,
A.
, and
De
,
S.
,
2021
, “
Mitigation of Wave Force and Dissipation of Energy by Multiple Arbitrary Porous Barriers
,”
Waves Random Complex Media
, pp.
1
24
.
8.
Sasmal
,
A.
, and
De
,
S.
,
2021
, “
Propagation of Oblique Water Waves by an Asymmetric Trench in the Presence of Surface Tension
,”
J. Ocean Eng. Sci.
,
6
(
2
), pp.
206
214
.
9.
Chanda
,
A.
, and
Bora
,
S.
,
2022
, “
Scattering of Flexural Gravity Waves by a Pair of Submerged Vertical Porous Barriers Located Above a Porous Sea-Bed
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
1
), p.
011201
.
10.
Sollitt
,
C. K.
, and
Cross
,
R. H
,
1973
, “
Wave Transmission Through Permeable Breakwaters
,”
Proceedings of 13th Coastal Engineering Conference
,
Vancouver, Canada
,
July 10–14
, 1972, Volume 1, pp.
1827
1846
.
11.
Chwang
,
A. T.
,
1983
, “
A Porous-Wavemaker Theory
,”
J. Fluid. Mech.
,
132
, pp.
395
406
.
12.
Selvan
,
S. A.
,
Behera
,
H.
, and
Sahoo
,
T.
,
2019
, “
Reduction of Hydroelastic Response of a Flexible Floating Structure by an Annular Flexible Permeable Membrane
,”
J. Eng. Math.
,
118
, p.
7399
.
13.
Koley
,
S.
,
2020
, “
Water Wave Scattering by Floating Flexible Porous Plate Over Variable Bathymetry Regions
,”
Ocean. Eng.
,
214
, p.
107686
.
14.
Ding
,
W.-W.
,
Zou
,
Z.-J.
, and
Wu
,
J.-P.
,
2019
, “
Bragg Reflection of Water Waves by Multiple Floating Horizontal Flexible Membranes With Submerged Rectangular Bars on the Seabed
,”
Appl. Ocean. Res.
,
83
, pp.
103
111
.
15.
Ashok
,
R.
,
Gunasundari
,
C.
, and
Manam
,
S. R.
,
2020
, “
Explicit Solutions of the Scattering Problems Involving Vertical Flexible Porous Structures
,”
J. Fluids Struct.
,
99
, p.
103149
.
16.
Gao
,
J.
,
Ma
,
X.
,
Dong
,
G.
,
Chen
,
H.
,
Liu
,
Q.
, and
Zang
,
J.
,
2021
, “
Investigation on the Effects of Bragg Reflection on Harbor Oscillations
,”
Coastal Eng.
,
170
, p.
103977
.
17.
Gao
,
J.
,
Shi
,
H.
,
Zang
,
J.
, and
Liu
,
Y.
,
2023
, “
Mechanism Analysis on the Mitigation of Harbor Resonance by Periodic Undulating Topography
,”
Ocean. Eng.
,
281
, p.
114923
.
18.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2013
, “
Transmission of Oblique Incident Waves by a Submerged Horizontal Porous Plate
,”
Ocean. Eng.
,
61
, pp.
56
65
.
19.
Kaligatla
,
R.
,
Sharma
,
M.
, and
Sahoo
,
T.
,
2021
, “
Wave Interaction With a Pair of Submerged Floating Tunnels in the Presence of an Array of Submerged Porous Breakwaters
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
2
), p.
021402
.
20.
Singla
,
S.
,
Behera
,
H.
,
Martha
,
C.
, and
Sahoo
,
T.
,
2022
, “
Scattering of Water Waves by Very Large Floating Structure in the Presence of a Porous Box
,”
ASME J. Offshore. Mech. Arct. Eng.
,
144
(
4
), p.
041904
.
21.
Vijay
,
K.
, and
Sahoo
,
T.
,
2019
, “
Scattering of Surface Gravity Waves by a Pair of Floating Porous Boxes
,”
ASME J. Offshore Mech. Arctic Eng.
,
141
(
5
), p.
051803
.
22.
Chakraborty
,
R.
, and
Mandal
,
B. N.
,
2015
, “
Oblique Wave Scattering by a Rectangular Submarine Trench
,”
ANZIAM J.
,
56
(
3
), pp.
286
298
.
23.
Dhillon
,
H.
,
Banerjea
,
S.
, and
Mandal
,
B. N.
,
2016
, “
Water Wave Scattering by a Finite Dock Over a Step-Type Bottom Topography
,”
Ocean. Eng.
,
113
, pp.
1
10
.
24.
Roy
,
R.
,
Basu
,
U.
, and
Mandal
,
B. N.
,
2016
, “
Oblique Water Wave Scattering by Two Unequal Vertical Barriers
,”
J. Eng. Math.
,
97
(
1
), pp.
119
133
.
25.
Kaur
,
A.
,
Martha
,
S. C.
, and
Chakrabarti
,
A.
,
2019
, “
Solution of the Problem of Propagation of Water Waves Over a Pair of Asymmetrical Rectangular Trenches
,”
Appl. Ocean. Res.
,
93
, p.
101946
.
26.
Karmakar
,
D.
, and
Soares
,
C. G.
,
2012
, “
Scattering of Gravity Waves by a Moored Finite Floating Elastic Plate
,”
Appl. Ocean. Res.
,
34
, pp.
135
149
.
27.
Kirby
,
J. T.
, and
Dalrymple
,
R. A.
,
1983
, “
Propagation of Obliquely Incident Water Waves Over a Trench
,”
J. Fluid. Mech.
,
133
, pp.
47
63
.
28.
Dean
,
R. G.
, and
Dalrymple
,
R. A
,
1991
,
Water Wave Mechanics for Engineers and Scientists
Vol.
2
,
World Scientific Publishing Company
,
Singapore
.
29.
Havelock
,
T. H.
,
1929
, “
LIX. Forced Surface-Waves on Water
,”
The London, Edinburgh, Dublin Philosophical Magazine J. Sci.
,
8
(
51
), pp.
569
576
.
30.
Milller
,
K. S.
,
1973
, “
Complex Linear Least Squares
,”
SIAM Rev.
,
15
(
4
), p.
706726
.
31.
Abul-Azm
,
A. G.
, and
Gesraha
,
M. R.
,
2000
, “
Approximation to the Hydrodynamics of Floating Pontoons Under Oblique Waves
,”
Ocean. Eng.
,
27
(
4
), pp.
365
384
.
32.
Gao
,
J.
,
Zang
,
J.
,
Chen
,
L.
,
Chen
,
Q.
,
Ding
,
H.
, and
Liu
,
Y.
,
2019
, “
On Hydrodynamic Characteristics of Gap Resonance Between Two Fixed Bodies in Close Proximity
,”
Ocean. Eng.
,
173
, pp.
28
44
.
33.
Gao
,
J.
,
He
,
Z.
,
Huang
,
X.
,
Liu
,
Q.
,
Zang
,
J.
, and
Wang
,
G.
,
2021
, “
Effects of Free Heave Motion on Wave Resonance Inside a Narrow Gap Between Two Boxes Under Wave Actions
,”
Ocean. Eng.
,
224
, p.
108753
.
34.
Gao
,
J. L.
,
Lyu
,
J.
,
Wang
,
J. H.
,
Zhang
,
J.
,
Liu
,
Q.
,
Zang
,
J.
, and
Zou
,
T.
,
2022
, “
Study on Transient Gap Resonance With Consideration of the Motion of Floating Body
,”
China Ocean Eng.
,
36
(
6
), pp.
994
1006
.
35.
Gao
,
J.
,
Gong
,
S.
,
He
,
Z.
,
Shi
,
H.
,
Zang
,
J.
,
Zou
,
T.
, and
Bai
,
X.
,
2023
, “
Study on Wave Loads During Steady-State Gap Resonance With Free Heave Motion of Floating Structure
,”
J. Marine Sci. Eng.
,
11
(
2
), p.
448
.
You do not currently have access to this content.