Abstract

Orifice flowmeters are widely used in industries to measure the flowrate in pipelines. The flowrate inside the pipe can be calculated using the relationship between the flow velocity and the pressure drop across the orifice plate. In the present study, numerical simulations have been carried out using three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations combined with the k–ω shear-stress transport (SST) turbulence model to thoroughly investigate the turbulent flow through a circular square-edged orifice with various orifice plate thicknesses and orifice diameters inside a pipe at different Reynolds numbers ranging from 2500 to 40,000. The orifice thickness to pipe diameter ratio (t) varies between 0.125 and 2, and the orifice diameter to pipe diameter (β) varies between 0.25 and 0.75. The resulting centerline profiles of the streamwise velocity and pressure of the present study are compared with the previous published numerical results and experimental data as the validation study. The effects of Reynolds numbers and orifice geometries on the pressure, the flow velocity, and vorticity distribution in the orifice are discussed in detail. It is found that for the fixed β, the discharge coefficient increases with the increasing t, and the vortical structure inside the orifice is separated into two regions located at the two edges of the orifice. For the fixed t, the size of the large recirculation motions behind the plate increases, and the vorticity around the plate becomes stronger with the decreasing β.

References

1.
Tunay
,
T.
,
Sahin
,
B.
, and
Akilli
,
H.
,
2004
, “
Investigation of Laminar and Turbulent Flow Through an Orifice Plate Inserted in a Pipe
,”
Trans. Can. Soc. Mech. Eng.
,
28
(
2B
), pp.
403
414
. 10.1139/tcsme-2004-0029
2.
Sahin
,
B.
, and
Ceyhan
,
H.
,
1996
, “
Numerical and Experimental Analysis of Laminar Flow Through Square-Edged Orifice With Variable Thickness
,”
Trans. Inst. Meas. Control
,
18
(
4
), pp.
166
174
. 10.1177/014233129601800401
3.
Johansen
,
F. C.
,
1930
, “
Flow Through Pipe Orifices at Low Reynolds Numbers
,”
Proc. R. Soc. A
,
126
(
801
), pp.
231
245
. 10.1098/rspa.1930.0004
4.
Gao
,
J.
, and
Wu
,
F.
,
2019
, “
Investigation of Flow Through the Two-Stage Orifice
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
117
127
. 10.1080/19942060.2018.1561517
5.
Hollingshead
,
C. L.
,
Johnson
,
M. C.
,
Barfuss
,
S. L.
, and
Spall
,
R. E.
,
2011
, “
Discharge Coefficient Performance of Venturi, Standard Concentric Orifice Plate, V-Cone and Wedge Flow Meters at Low Reynolds Numbers
,”
J. Pet. Sci. Eng.
,
78
(
3–4
), pp.
559
566
. 10.1016/j.petrol.2011.08.008
6.
Ding
,
T. M.
, and
Wang
,
Y.
,
2015
, “
Comparison Research on Hydraulic Characteristics of Three Type’s Orifice Plate
,”
Open Fuels Energy Sci. J.
,
8
(
1
), pp.
43
46
. 10.2174/1876973X01508010043
7.
Eiamsa-ard
,
S.
,
Ridluan
,
A.
,
Somravysin
,
P.
,
Promvonge
,
P.
, and
Chok
,
N.
,
2008
, “
Numerical Investigation of Turbulent Flow Through a Circular Orifice
,”
KMITL Sci. J
,
8
(
1
), pp.
44
50
.
8.
Siba
,
M. A.
,
Mahmood
,
W. M. F.
,
Nuawi
,
M. Z.
,
Rasani
,
R.
, and
Nassir
,
M. H.
,
2015
, “
Modeling and Applications of 3D Flow in Orifice Plate at low Turbulent Reynold Numbers
,”
Int. J. Mech. Mechatron. Eng.
,
15
(
4
), pp.
19
25
.
9.
Goswami
,
S.
, and
Hemmati
,
A.
,
2020
, “
Response of Turbulent Pipeflow to Multiple Square bar Roughness Elements at High Reynolds Number
,”
Phys. Fluids
,
32
(
7
), p.
075110
. 10.1063/5.0014832
10.
Menter
,
F. R.
,
1994
, “
Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
11.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
, pp.
172
180
.
12.
Jones
,
W. P.
, and
Launder
,
B.
,
1973
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
. 10.1016/0017-9310(73)90125-7
13.
Shah
,
M. S.
,
Joshi
,
J. B.
,
Kalsi
,
A. S.
,
Prasad
,
C. S. R.
, and
Shukla
,
D. S.
,
2012
, “
Analysis of Flow Through an Orifice Meter: CFD Simulation
,”
Chem. Eng. Sci.
,
71
, pp.
300
309
. 10.1016/j.ces.2011.11.022
14.
Browne
,
L. W. B.
, and
Dinkelacker
,
A.
,
1995
, “
Turbulent Pipe Flow: Pressures and Velocities
,”
Fluid Dyn. Res.
,
15
(
3
), pp.
177
204
. 10.1016/0169-5983(94)00038-2
15.
Nail
,
G. H.
,
1991
, “
A Study of 3-Dimensional Flow Through Orifice Meters
”,
Ph.D. dissertation
,
Texas A&M University
,
College Station, TX
.
16.
Fogaing
,
M. B. T.
,
Hemmati
,
A.
,
Lange
,
C. F.
, and
Fleck
,
B. A.
,
2019
, “
Performance of Turbulence Models in Simulating Wind Loads on Photovoltaics Modules
,”
Energies
,
12
(
17
), p.
3290
. 10.3390/en12173290
17.
Ni
,
C.
,
2003
, “
Numerical Simulation of low Reynolds Number Pipe Orifice Flow
,”
Retrospective Theses and Dissertations
,
17015
.
You do not currently have access to this content.