Abstract

Strong feedback phenomenon between the reactor physical and thermal-hydraulic has an important impact on the design and safety analysis of pressured water reactor (PWR). In order to accurately simulate the strong coupling effect of hydraulic in PWR, a reactor multiphysical coupling calculation code is developed, in which the three-dimensional (3D) space–time neutron dynamic equation is solved by the nodal expansion method (NEM) and nodal green's function method (NGFM); the coolant temperature and fuel temperature are solved by single channel model and the cylinder heat conduction model, respectively. The 3D light water reactor (LWR) benchmark and the Nuclear Energy Agency Committee on Reactor Physics (NEACRP) PWR rod ejection benchmark are used to verify the neutronics model and coupling calculation solution ability, respectively. The results show that: (1) the NEM and NGFM have high accuracy in solving the 3D space–time neutron dynamics equation; (2) the results of neutronics and thermal-hydraulic coupling steady/transient calculation such as core normalized power and fuel Doppler temperature are in good agreement with those of the NEACRP PWR benchmark, and the calculation accuracy is equivalent to similar software. Four coupled reactor physics and thermal hydraulic calculation modes are used to analyze the influence of different reactor physics calculation methods and thermal hydraulic calculation methods on the key parameters of PWR transient process in this paper. The results show that the mode of NGFM + finite volume method (FVM) can more accurately simulate the reactor core normalized power peak and fuel Doppler temperature.

References

1.
Xie
,
Z. S.
,
Wu
,
H. C.
, and
Zhang
,
S. H.
,
2004
,
Physical Analysis of Nuclear Reactors (Revised)
,
Atomic Energy Press
,
Beijing, China
.
2.
Joo
,
H. G.
,
Barber
,
D. A.
,
Jiang
,
G. B.
, and
Downar
,
T. J.
,
1998
,
PARCS: A Multi-Dimensional Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal Method
,
Purdue University School of Nuclear Engineering
, West Lafayette, IN, Report No. PU/NE-98-26.
3.
Kozmenkov
,
Y.
,
Kliem
,
S.
,
Grundmann
,
U.
,
Rohde
,
U.
, and
Weiss
,
F.-P.
,
2007
, “
Calculation of the VVER-1000 Coolant Transient Benchmark Using the Coupled Code Systems DYN3D/RELAP5 and DYN3D/ATHLET
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1938
1951
.10.1016/j.nucengdes.2007.02.021
4.
Shigeaki
,
A.
,
Takayuki
,
S.
,
Juto
,
O.
, and
Toshikazu
,
T.
,
2007
, “
The Verification of 3 Dimensional Nodal Kinetics Code ANCK Using Transient Benchmark Problems
,”
J. Nucl. Sci. Technol.
,
44
(
6
), pp.
862
868
.10.1080/18811248.2007.9711323
5.
Pinem
,
S.
,
Sembiring
,
T. M.
, and
Liem
,
P. H.
,
2014
, “
The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark
,”
Sci. Technol. Nucl. Install.
,
2014
, pp.
1
9
.10.1155/2014/845832
6.
Sembiring
,
T. M.
,
Pinem
,
S.
, and
Liem
,
P. H.
,
2017
, “
Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases With NODAL3 Code
,”
Sci. Technol. Nucl. Install.
,
2017
, pp.
1
8
.10.1155/2017/5151890
7.
Pinem
,
S.
,
Sembiring
,
T. M.
, and
Liem
,
P. H.
,
2016
, “
NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR)
,”
Sci. Technol. Nucl. Install.
,
2016
, pp.
1
11
.10.1155/2016/7538681
8.
Liu
,
L.
,
Li
,
F.
,
Zhang
,
H.
,
Zhang
,
Y.
, and
Jia
,
B. S.
,
2010
, “
Verification of Three Dimensional Neutronics and Thermal-Hydraulic Coupled Code With RIA Benchmarks
,”
At. Energy Sci. Technol.
,
44
(
11
), pp.
1328
1334
.10.1016/S1876-3804(11)60004-9
9.
Bousbia Salah
,
A.
,
Vedovi
,
J.
,
D'Auria
,
F.
,
Galassi
,
G.
, and
Ivanov
,
K.
,
2006
, “
Analysis of the VVER1000 Coolant Trip Benchmark Using the Coupled RELAP5/PARCS Code
,”
Prog. Nucl. Energy
,
48
(
8
), pp.
806
819
.10.1016/j.pnucene.2006.06.005
10.
An
,
P.
,
Liu
,
D.
, and
Pan
,
J. J.
,
2019
, “
Development of Steady Reactor Core Multi-Physics Coupling System CSSS V1.0
,”
At. Energy Sci. Technol.
,
53
(
5
), pp.
863
868
.http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS201905013.htm
11.
Smith
,
K. S.
,
1983
, “
Nodal Method Strategy Reduction by Nonlinear Iteration
,”
Trans. Am. Nucl. Soc.
,
44
, pp.
265
266
.http://ci.nii.ac.jp/naid/80002095029
12.
Lawrence
,
R. D.
,
1979
,
A Nodal Green's Function Method for Multidimensional Neutron Diffusion Calculations
,
University of Illinois
, Champaign, IL.
13.
Finnemann
,
H.
, and
Galati
,
A.
,
1991
, “
NEACRP 3-D LWR Core Transient Benchmark Specification, OECA/NEA, NEACRP-L-335(Revision 1)
,” [s.1.]: OECD/NEA, Paris, France.
14.
Finnemann
,
H.
,
Bauer
,
H.
,
Galati
,
A.
, and
Martinelli
,
R.
,
1993
, “
Results of LWR Core Transient Benchmarks
,”
NEA/NSC/DOC
,
25
(
93
), p.
83
.http://openarchive.enea.it/handle/10840/3220
15.
Xie
,
Z. S.
,
Zhang
,
Y. M.
,
Zhang
,
J. M.
, and
Wu
,
H. C.
,
1997
,
Physical Numerical Calculation of Nuclear Reactor
,
Atomic Energy Press
,
Beijing, China
.
16.
Cao
,
L. Z.
,
Xie
,
Z. S.
, and
Li
,
Y. Z.
,
2017
,
Physical Analysis of Modern Nuclear Reactor
,
Atomic Energy Press
,
Beijing, China
.
17.
Smith
,
K. S.
,
1979
,
An Analytic Nodal Method for Solving the Two-Group Multidimensional, Static and Transient Neutron Diffusion Equations
,
MIT
,
Cambridge, UK
.
18.
Okumura
,
K.
,
1998
, “
MOSRA-Light: High Speed Three-Dimensional Nodal Diffusion Code for Vector Computers
,” Japan Atomic Energy Research Institute, Tokai, Japan, Report No. JAERI-Data/Code 98-025, JAERI.
19.
An
,
P.
, and
Yao
,
D.
,
2014
, “
Hexagonal Green Function Nodal Method
,”
At. Energy Sci. Technol.
,
48
(
4
), pp.
667
672
.10.7538/yzk.2014.48.04.0667
20.
Zhao
,
W. B.
,
2012
,
Study on Transient Nodal Green's Function Method and Coupled Method With Thermal-Hydraulic
,
Tsinghua University
,
Beijing, China
.
21.
Yu
,
P. A.
,
2002
,
Thermal Analysis of Nuclear Reactor
,
Shanghai Jiao Tong University Press
,
Shanghai, China
.
22.
Jia
,
X. X.
,
Xu
,
M. H.
,
Hu
,
G. H.
,
Liu
,
J.
,
Lu
,
H.
, and
Liang
,
Z.
,
2014
, “
Numerical Method for Three-Dimensional Heat Conduction in Cylindrical and Spherical Coordinates
,”
J. Chongqing Univ. Technol.(Nat. Sci.)
,
28
(
1
), pp.
34
48
.10.2991/iccia-16.2016.48
23.
Yin
,
Q.
,
Chai
,
X. M.
,
Tu
,
X. L.
, and
Pan
,
J. J.
,
2014
, “
Research of Simulation Program FRET for Fuel Rod Resonance Effective Temperature Mechanism
,”
Nucl. Power Eng.
,
35
(
s2
), pp.
194
196
.10.13832/j.jnpe.2014.S2.0194
24.
Argonne Code Center
,
1977
, “
Benchmark Problem Book: ANL-7416 Supplement 2
,” Computational Benchmark Problems Committee of the Mathematics and Computation Division of the American Nuclear Society, IL.
25.
Bandini
,
B. R.
,
1990
,
A Three-Dimensional Transient Neutronics Routine for the TRAC-PF1 Reactor Thermal Hydraulic Computer Code
,
PSU
, State College, PA.
26.
Sutton
,
T. M.
, and
Aviles
,
B. N.
,
1996
, “
Diffusion Theory Methods for Spatial Kinetics Calculations
,”
Prog. Nucl. Energy
,
30
(
2
), pp.
119
182
.10.1016/0149-1970(95)00082-U
27.
Kinght
,
M. P.
, and
Bryce
,
P.
,
1997
, “
Derivation of a Refined PANTHER Solution to the NEACRP PWR Rod-Ejection Transient
,”
Proceedings of the Joint International Conference on Mathematical Method Applications
,
Saratoga Springs
, Vol.
1
, New York, Oct. 5–9, pp.
302
313
.
28.
Li
,
X. Y.
,
Liu
,
Q. W.
,
Li
,
Q.
,
Chen
,
L.
,
Liu
,
X. L.
,
Wang
,
S. Q.
,
Xie
,
Y. L.
, and
Chen
,
C.
,
2019
, “
177 Core Nuclear Design for HPR1000
,”
Nucl. Power Eng.
,
40
(
S1
), pp.
0008
00012
.http://www.cqvip.com/QK/95572X/2019A01/72687671504849578349484850.html
You do not currently have access to this content.