Abstract

The very-small, long-life, modular (VSLLIM) nuclear reactor generates 1.0–10 MWth, for ∼92 and 5.8 full power years (FPY), respectively, without refueling. This factory fabricated, assembled, and sealed reactor is cooled by natural circulation of in-vessel liquid sodium (Na). It offers redundant control and passive operation and decay heat removal features. The VSLLIM reactor, together with other plant components for generating electricity using open Brayton cycle, is deployable on a portable platform. Alternatively, multiple units could be installed at a site and use high thermal efficiency Rankine or supercritical CO2 cycles for electricity generation. Extensive analyses are performed to estimate postoperation external biological dose rate and the storage time required on-site for this dose rate to decrease to or below the U.S. federal transportation limit (0.2 rem/h or 2 mSv/h) for safe handling, removal, and replacement with a new unit loaded with fresh fuel. Results show that gamma photons emission from the uranium nitride (UN) fuel and the activated HT-9 steel cladding for the UN fuel rods, the core structure, and the reactor primary vessel, is a major contributor to the radiological source term, and the external biological dose rate estimates. After operating at 10 MWth for 5.8 FPY, using 6 cm thick lead shielding of the reactor guard vessel, decreases the postoperation external biological dose rate to be in compliance with the federal limit, only after∼ 103 days of postoperation on-site storage.

References

1.
International Atomic Energy Agency
,
2012
, “
Status of Small Medium Sized Reactor Designs—A Supplement to the IAEA Advanced Reactors Information System (ARIS)
,”
International Atomic Energy Agency
,
Vienna, Austria
.
2.
International Atomic Energy Agency
,
2014
, “
Status of Small Medium Sized Reactor Designs—A Supplement to the IAEA Advanced Reactors Information System (ARIS)
,”
International Atomic Energy Agency
,
Vienna, Austria
.
3.
International Atomic Energy Agency
,
2016
, “
Advance in Small Modular Reactor Technology Developments - A Supplement to the IAEA Advanced Reactors Information System (ARIS)
,”
International Atomic Energy Agency
,
Vienna, Austria
.
4.
Filippone
,
C.
, and
Jordan
,
K. A.
,
2017
, “
The Holos Reactor: A Distribution Generation With Transportable Subcritical Power Modules—Holos Generators
,” accessed Nov. 30, 2018, https://engrxiv.org/jzac9/
5.
El-Genk
,
M. S.
, and
Palomino
,
L. M.
,
2015
, “
SLIMM-Scalable Liquid Metal Cooled Small Modular Reactor: Preliminary Design
,”
J. Prog. Nucl. Energy
,
85
, pp.
56
70
.10.1016/j.pnucene.2015.06.005
6.
El-Genk
,
M. S.
,
Palomino
,
L. M.
, and
Schriener
,
T. M.
,
2017
, “
Low-Enrichment and Long-Life Scalable Liquid Metal Cooled Small Modular (SLIMM-1.2) Reactor
,”
J. Nucl. Eng. Des.
,
315
, pp.
163
185
.10.1016/j.nucengdes.2017.02.032
7.
Westinghouse Global Technology Office
,
2017
, “
Westinghouse eVinci Micro Reactor
,” accessed Mar. 10, 2019, http://www.westinghousenuclear.com
8.
Department of Defense
,
2016
, “
Task Force on Energy Systems for Forward/Remote Operating Bases
,” U.S. Department of Defense, Washington, DC, Report No. AD1022571.
9.
Peakman
,
A.
,
Hodgson
,
Z.
, and
Merk
,
B.
,
2018
, “
Advanced Micro-Reactor Concepts
,”
J. Prog. Nucl. Energy
,
107
, pp.
61
70
.10.1016/j.pnucene.2018.02.025
10.
International Atomic Energy Agency
,
2018
, “
Advances in Small Modular Reactor Technology Developments—A Supplement to the IAEA Advanced Reactors Information System (ARIS)
,”
International Atomic Energy Agency
,
Vienna, Austria
.
11.
Smith
,
M. C.
, and
Wright
,
R. F.
,
2012
, “
Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events
,”
Proceedings ICAPP'12
,
American Nuclear Society
,
Chicago, IL
, June 24–28, Paper No. 12157.https://pdfs.semanticscholar.org/dc77/a0affca188865ecf5e21356a7386d3cb25b8.pdf
12.
Salemo
,
L. N.
,
Berglund
,
R. C.
,
Gyorey
,
G. L.
,
Tipets
,
F. E.
, and
Tschamper
,
P. M.
,
1988
, “
PRISM Concept, Modular LMR Reactor
,”
J. Nucl. Eng. Des.
,
109
, pp.
79
86
.10.1016/0029-5493(88)90144-6
13.
Kuznetsov
,
V.
,
2008
, “
Options for Small and Medium Sized Reactors (SMRs) to Overcome Loss of Economies of Scale and Incorporate Increased Proliferation Resistance and Energy Security
,”
J. Prog. Nucl. Energy
,
50
(
2–6
), pp.
242
250
.10.1016/j.pnucene.2007.11.006
14.
Kyoko
,
I.
,
Hisato
,
M.
, and
Norihiko
,
H.
,
2011
, “
Activities for 4S USNRC Licensing
,”
J. Prog. Nucl. Energy
,
53
(
7
), pp.
831
834
.10.1016/j.pnucene.2011.05.034
15.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
J. Desalination
,
340
, pp.
84
93
.10.1016/j.desal.2014.02.023
16.
Horie
,
H.
,
Miyagi
,
K.
,
Nakahara
,
K.
, and
Matsumiya
,
H.
,
2008
, “
Safety Performance of the 4S Reactor on the ATWS Events—Statistical Estimation of Uncertainty
,”
J. Prog. Nucl. Energy
,
50
(
2–6
), pp.
179
184
.10.1016/j.pnucene.2007.10.017
17.
Chun
,
J. H.
,
Lee
,
K. H.
, and
Chung
,
Y. J.
,
2013
, “
Assessment and SMART Application of System Analysis Design Code, TASS/SMR-S for SBLOCA
,”
J. Nucl. Eng. Des.
,
254
, pp.
291
299
.10.1016/j.nucengdes.2012.09.029
18.
Halfinger
,
J. A.
, and
Haggerty
,
M. D.
,
2012
, “
The B&W mPower™Â™ Scalable, Practical Nuclear Reactor Design
,”
J. Nuclear Technol.
,
178
(
2
), pp.
164
169
.10.13182/NT11-65
19.
Carelli
,
M. D.
,
Garrone
,
P.
,
Locatelli
,
G.
,
Mancini
,
M.
,
Mycoff
,
C.
,
Trucco
,
P.
, and
Ricotti
,
M. E.
,
2010
, “
Economic Features of Integral, Modular, and Small-to-Medium Size Reactors
,”
J. Prog. Nucl. Energy
,
52
(
4
), pp.
403
414
.10.1016/j.pnucene.2009.09.003
20.
General Atomics and Affiliated Companies
,
2010
, “
EM2TM Energy Multiplier Module
,”
General Atomics
,
San Diego, CA
, accessed Dec. 12, 2018, http://www.ga.com/energy/em2/
21.
El-Genk
,
M. S.
, and
Palomino
,
L. M.
,
2019
, “
A Walk-Away Safe, Very Small, Long-LIfe, Modular (VSLLIM) Reactor for Portable and Stationary Power
,”
J. Ann. Nucl. Energy
,
129
, pp.
181
198
.10.1016/j.anucene.2019.01.025
22.
Haskins
,
D. A.
, and
EL-Genk
,
M. S.
,
2015
, “
Natural Circulation Model and Performance Analyses of ‘SLIMM'—A Small, Modular Sodium-Cooled Reactor
,”
Proceedings 16th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
(
NURETH-16
), Chicago, IL, Aug. 30–Sept. 4, pp.
6717
6730
. http://glc.ans.org/nureth-16/data/papers/13514.pdf
23.
Haskins
,
D. A.
, and
El-Genk
,
M. S.
,
2016
, “
CFD Analyses and Correlation of Pressure Losses on the Shell-Side of Concentric, Helically-Coiled Tubes Heat Exchanger
,”
J. Nucl. Eng. Des.
,
305
, pp.
531
546
.10.1016/j.nucengdes.2016.05.014
24.
Ross
,
S. B.
, and
El-Genk
,
M. S.
,
1988
, “
Thermal Conductivity Correlation for Uranium Nitride Fuel Between 10 and 1923 K
,”
J. Nucl. Mater
.,
151
(
3
), pp.
313
317
25.
Ross
,
S. B.
,
El-Genk
,
M. S.
, and
Matthews
,
R. B.
,
1990
, “
Uranium Nitride Fuel Swelling Correlation
,”
J. Nucl. Mater.
,
170
(
2
), pp.
169
177
.10.1016/0022-3115(90)90409-G
26.
Hayes
,
S. L.
,
Thomas
,
J. K.
, and
Peddicord
,
K. L.
,
1990
, “
Material Property Correlation for Uranium Mononitride IV: Thermodynamic Properties
,”
J. Nucl. Mater.
,
171
(
2–3
), pp.
300
318
.10.1016/0022-3115(90)90377-Y
27.
International Atomic Energy Agency
,
2008
, “
Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data
,”
IAEA
,
Vienna, Austria
, Report No. IAEA-THPH.
28.
Barret
,
K.
,
Bragg-Sitton
,
S.
, and
Galicki
,
D.
,
2012
, “
Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/EXT-12-27090.
29.
Brown
,
N. R.
, and
Todosow
,
M.
,
2014
, “
Reactor Performance Screening of Accident Tolerant Fuel and Cladding Candidate Systems
,”
Brookhaven National Laboratory
,
Long Island, NY
, Report No. BNL-107219-2014-cp.
30.
Hickman
,
B. S.
, and
Pryor
,
A. W.
,
1964
, “
The Effect of Neutron Irradiation on Beryllium Oxide
,”
J. Nucl. Mater.
,
14
, pp.
96
110
.10.1016/0022-3115(64)90166-7
31.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
2003
, “
High Efficiency Segmented Thermoelectric for Operation Between 973 K and 300 K
,”
J. Energy Convers. Manage.
,
44
(
7
), pp.
1069
1088
.10.1016/S0196-8904(02)00109-7
32.
El-Genk
,
M. S.
,
Saber
,
H. H.
,
Caillat
,
T.
, and
Sakamoto
,
J.
,
2006
, “
Test Results and Performance Comparisons of Coated and Un-Coated Skutterudite-Based Segmented Unicouples
,”
J. Energy Convers. Manage.
,
47
(
2
), pp.
174
200
.10.1016/j.enconman.2005.03.023
33.
El-Genk
,
M. S.
, and
Tournier
,
J. M.
,
2003
, “
Analysis of Small Nuclear Power Plants With Static Energy Conversion
,”
J. Prog. Nucl. Energy
,
42
(
3
), pp.
283
310
.10.1016/S0149-1970(03)90001-1
34.
El-Genk
,
M. S.
, and
Tournier
,
J. M.
,
2011
, “
Uses of Liquid-Metal and Water Heat Pipes in Space Reactor Power Systems
,”
J. Front. Heat Pipes
,
2
, p.
3002
.10.5098/fhp.v2.1.3002
35.
Palomino
,
L. M.
, and
El-Genk
,
M. S.
,
2016
, “
CFD and Thermal-Hydraulics Analyses of “SLIMM” Reactor Passive Decay Heat Removal by Natural Circulation of Ambient Air
,”
J. Nucl. Technol.
,
195
(
1
), pp.
1
14
.10.13182/NT15-102
36.
U.S. Code of Federal Regulation
,
2017
, “
Title 10 Part 71.47: External Radiation Standards for All Packages
,” accessed Apr. 5, 2018, https://www.nrc.gov/reading-rm/doc-collections/cfr/part071/part071-0047.html
37.
El-Genk
,
M. S.
, and
Schriener
,
T. M.
,
2018
, “
Post-Operation Radiological Source Term and Dose Rate Estimates for the Scalable LIquid Metal-Cooled Small Modular Reactor
,”
J. Ann. Nucl. Energy
,
115
, pp.
442
458
.10.1016/j.anucene.2018.02.001
38.
Goorley
,
T.
,
2014
, “
MCNP6.1.1-Beta Release Notes
,”
Los Alamos National Laboratory
,
Los Alamos, NM
, Report No. LA-UR-14-24680.
39.
Gauld
,
I. C.
,
Bowman
,
S. M.
, and
Horwedel
,
J. E.
,
2006
, “
ORIGEN-ARP: Automatic Rapid Processing for Spent Fuel Depletion, Decay, and Source Term Analysis
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-2005/39.
40.
Brown
,
F. B.
,
2006
, “
The MAKXSF Code With Doppler Broadening
,”
Los Alamos National
,
Los Alamos, NM
, Report No. LA-UR-06-7002.
41.
Chadwick
,
M. B.
,
Obložinský
,
P.
,
Herman
,
M.
,
Greene
,
N. M.
,
McKnight
,
R. D.
,
Smith
,
D. L.
,
Young
,
P. G.
,
MacFarlane
,
R. E.
,
Hale
,
G. M.
,
Frankle
,
S. C.
,
Kahler
,
A. C.
,
Kawano
,
T.
,
Little
,
R. C.
,
Madland
,
D. G.
,
Moller
,
P.
,
Mosteller
,
R. D.
,
Page
,
P. R.
,
Talou
,
P.
,
Trellue
,
H.
,
White
,
M. C.
,
Wilson
,
W. B.
,
Arcilla
,
R.
,
Dunford
,
C. L.
,
Mughabghab
,
S. F.
,
Pritychenko
,
B.
,
Rochman
,
D.
,
Sonzogni
,
A. A.
,
Lubitz
,
C. R.
,
Trumbull
,
T. H.
,
Weinman
,
J. P.
,
Brown
,
D. A.
,
Cullen
,
D. E.
,
Heinrichs
,
D. P.
,
McNabb
,
D. P.
,
Derrien
,
H.
,
Dunn
,
M. E.
,
Larson
,
N. M.
,
Leal
,
L. C.
,
Carlson
,
A. D.
,
Block
,
R. C.
,
Briggs
,
J. B.
,
Cheng
,
E. T.
,
Huria
,
H. C.
,
Zerkle
,
M. L.
,
Kozier
,
K. S.
,
Courcelle
,
A.
,
Pronyaev
,
V.
, and
van der Marck
,
S. C.
,
2006
, “
ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nucl. Data Sheets
,
107
(
12
), pp.
2931
3059
.10.1016/j.nds.2006.11.001
42.
Mosteller
,
R. D.
,
Macfarlane
,
R. E.
,
Little
,
R. C.
, and
White
,
M. C.
,
2003
, “
Analysis of Hot and Cold Kritz Criticals With MCNP5 and Temperature-Specific Nuclear Data Libraries
,”
Proceedings Advances in Nuclear Fuel Management III (ANFM)
,
Hilton Head, SC
, Oct. 5–8.
43.
Mosteller
,
R. D.
,
2008
, “
ENDF/B-VII.0, ENDF/B-VI, JEFF-3.1, and JENDL-3.3 Results for the MCNP Criticality Validation Suite and Other Criticality Benchmarks
,”
Proceedings of International Conference on Reactor Physics
,
Nuclear Power
,
Interlaken, Switzerland
, Sept. 14–19. https://inis.iaea.org/search/search.aspx?orig_q=RN:41116001
You do not currently have access to this content.