Abstract

Turbulent Prandtl number (Prt) has a great impact on the performance of turbulence models in predicting heat transfer of supercritical fluids. Unrealistic treatment of Prt may lead to large deviations of the prediction results from experimental data under supercritical conditions. In this study, the effect of Prt on heat transfer of supercritical water was extensively studied by using shear stress transport (SST) k–ω turbulence model, and the results suggested that using the existing Prt models would lead to failures in predicting the heat transfer characteristics of supercritical water under deteriorated heat transfer (dht) conditions. A new variable Prt model was proposed with the Prt varied with pressure, turbulent viscosity ratio, and molecular Prandtl number. The new model was validated by comparing the numerical results with the corresponding experimental data, and it was found that the new variable Prt model exhibited better performance on reproducing the dht of supercritical water in vertical tubes than those of the existing Prt models.

References

1.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
.10.1016/j.nucengdes.2003.10.010
2.
Mokry
,
S.
,
Pioro
,
I.
,
Kirillov
,
P.
, and
Gospodinov
,
Y.
,
2010
, “
Supercritical-Water Heat Transfer in a Vertical Bare Tube
,”
Nucl. Eng. Des.
,
240
(
3
), pp.
568
576
.10.1016/j.nucengdes.2009.09.003
3.
Pioro
,
I.
,
2011
, “
The Potential Use of Supercritical Water-Cooling in Nuclear Reactors
,”
Nuclear Energy Encyclopedia: Science, Technology, and Applications
,
S. B.
Krivit
,
J. H.
Lehr
, and
Th. B.
Kingery
, eds.,
J. Wiley & Sons
,
Hoboken, NJ
, pp.
309
347
.
4.
Pioro
,
I.
,
Duffey
,
R. B.
,
Kirillov
,
P.
,
Pioro
,
R.
,
Zvorykin
,
A.
, and
Machrafi
,
R.
,
2019
, “
Current Status and Future Developments in Nuclear-Power Industry of the World
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
2
), p.
024001
.10.1115/1.4042194
5.
Pioro
,
I.
, ed.,
2016
,
Handbook of Generation IV Nuclear Reactors
,
Elsevier—Woodhead Publishing
,
Duxford, UK
, p.
940
.
6.
Li
,
M.
,
Chen
,
S.
,
Shi
,
X.
,
Lyu
,
C.
,
Zhang
,
Y.
,
Tan
,
M.
,
Wang
,
C.
,
Zang
,
N.
,
Liu
,
X.
,
Hu
,
Y.
,
Shen
,
J.
,
Zhou
,
L.
, and
Gu
,
Y.
,
2018
, “
Impairment of the Heat Transmission at Supercritical Pressures (Heat Transfer Process Examined During Forced Motion of Water at Supercritical Pressures
,”
High Temp. Sci.
,
15
(
1
), pp.
237
244
.10.1186/s12974-018-1267-5
7.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
8.
Zhang
,
Q.
,
Li
,
H.
,
Lei
,
X.
,
Kong
,
X.
,
Liu
,
J.
, and
Zhang
,
W.
,
2016
, “
Numerical Investigation on Heat Transfer Enhancement of Supercritical CO2 Flowing in Heated Vertically Upward Tubes
,”
ASME
Paper No. HT2016-7300. 10.1115/HT2016-7300
9.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
10.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
Y.
, and
Zhang
,
W.
,
2013
, “
Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071703
.10.1115/1.4023747
11.
Gu
,
H.
,
Zhao
,
M.
, and
Cheng
,
X.
,
2015
, “
Experimental Studies on Heat Transfer to Supercritical Water in Circular Tubes at High Heat Fluxes
,”
Exp. Therm. Fluid Sci.
,
65
, pp.
22
32
.10.1016/j.expthermflusci.2015.03.001
12.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
13.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
14.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. D.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
15.
Ackerman
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
497
.10.1115/1.3449698
16.
Pis'menny
,
E.
,
Razumovskiy
,
V.
,
Maevskiy
,
E.
,
Koloskov
,
A.
, and
Pioro
,
I.
, “
Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes
,”
ASME
Paper No. ICONE14-89483.10.1115/ICONE14-89483
17.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
W.
,
Dinh
,
N. T.
,
Guo
,
Y.
, and
Yu
,
S.
,
2017
, “
Experimental Study on the Difference of Heat Transfer Characteristics Between Vertical and Horizontal Flows of Supercritical Pressure Water
,”
Appl. Therm. Eng.
,
113
, pp.
609
620
.10.1016/j.applthermaleng.2016.11.051
18.
Pioro
,
I.
,
Mokry
,
S.
, and
Draper
,
S.
,
2011
, “
Specifics of Thermophysical Properties and Forced-Convective Heat Transfer at Critical and Supercritical Pressures
,”
Rev. Chem. Eng.
,
27
(
3–4
), pp.
191
214
.10.1515/REVCE.2011.501
19.
Pioro
,
I. L.
,
Duffey
,
R. B.
, and
Dumouchel
,
T. J.
,
2004
, “
Hydraulic Resistance of Fluids Flowing in Channels at Supercritical Pressures (Survey)
,”
Nucl. Eng. Des.
,
231
(
2
), pp.
187
197
.10.1016/j.nucengdes.2004.03.001
20.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.10.1016/j.nucengdes.2005.05.034
21.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2012
, “
Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants—Part I: Specifics of Thermophysical Properties of Supercritical Pressure Fluids and Turbulent Heat Transfer Under Heating Conditions in Round Tubes (State of the Art)
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3061
3075
.10.1016/j.ijheatmasstransfer.2012.01.031
22.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2013
, “
Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants—Part II: Experimental Data on Hydraulic Resistance and Averaged Turbulent Flow Structure of Supercritical Pressure Fluids During Heating in Round Tubes Under Normal and Deteriorated Heat Transfer Conditions
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
152
167
.10.1016/j.ijheatmasstransfer.2012.10.072
23.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2013
, “
Heat Transfer and Hydraulic Resistance of Supercritical Pressure Coolants—Part III: Generalized Description of SCP Fluids Normal Heat Transfer, Empirical Calculating Correlations, Integral Method of Theoretical Calculations
,”
Int. J. Heat Mass Transfer
,
67
, pp.
535
547
.10.1016/j.ijheatmasstransfer.2013.07.056
24.
Yoo
,
J. Y.
,
2013
, “
The Turbulent Flows of Supercritical Fluids With Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
495
525
.10.1146/annurev-fluid-120710-101234
25.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2014
, “
Heat Transfer and Hydraulic Resistance of Supercritical Pressure Coolants—Part IV: Problems of Generalized Heat Transfer Description, Methods of Predicting Deteriorated Heat Transfer; Empirical Correlations; Deteriorated Heat Transfer Enhancement; Dissolved Gas Effects
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1197
1212
.10.1016/j.ijheatmasstransfer.2014.06.014
26.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
27.
Pioro
,
I.
,
2010
, “
Heat-Transfer at Supercritical Pressures
,”
Proceedings of the 14th International Heat Transfer Conference
, Washington, DC, Aug. 8–13, pp.
369
382
.
28.
Loewenberg
,
M. F.
,
Laurien
,
E.
,
Class
,
A.
, and
Schulenberg
,
T.
,
2008
, “
Supercritical Water Heat Transfer in Vertical Tubes: A Look-Up Table
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
532
538
.10.1016/j.pnucene.2007.11.037
29.
Yang
,
Y.
,
Cheng
,
X.
, and
Huang
,
S.
,
2009
, “
A New Heat Transfer Correlation for Supercritical Fluids
,”
Front. Energy Power Eng. China
,
3
(
2
), pp.
226
232
.10.1007/s11708-009-0022-0
30.
Jäger
,
W.
,
Sánchez Espinoza
,
V. H.
, and
Hurtado
,
A.
,
2011
, “
Review and Proposal for Heat Transfer Predictions at Supercritical Water Conditions Using Existing Correlations and Experiments
,”
Nucl. Eng. Des.
,
241
(
6
), pp.
2184
2203
.10.1016/j.nucengdes.2011.03.022
31.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
78
, pp.
156
160
.10.1016/j.ijheatmasstransfer.2014.06.059
32.
Chen
,
W.
,
Fang
,
X.
,
Xu
,
Y.
, and
Su
,
X.
,
2015
, “
An Assessment of Correlations of Forced Convection Heat Transfer to Water at Supercritical Pressure
,”
Ann. Nucl. Energy
,
76
, pp.
451
460
.10.1016/j.anucene.2014.10.027
33.
Schatte
,
G. A.
,
Kohlhepp
,
A.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2016
, “
Development of a New Empirical Correlation for the Prediction of the Onset of the Deterioration of Heat Transfer to Supercritical Water in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
102
, pp.
133
141
.10.1016/j.ijheatmasstransfer.2016.06.007
34.
Cheng
,
X.
,
Kuang
,
B.
, and
Yang
,
Y. H.
,
2007
, “
Numerical Analysis of Heat Transfer in Supercritical Water Cooled Flow Channels
,”
Nucl. Eng. Des.
,
237
(
3
), pp.
240
252
.10.1016/j.nucengdes.2006.06.011
35.
He
,
S.
,
Kim
,
W. S.
, and
Bae
,
J. H.
,
2008
, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4659
4675
.10.1016/j.ijheatmasstransfer.2007.12.028
36.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor
,”
Sci. Technol. Nucl. Install.
,
2008
, pp.
1
5
.10.1155/2008/405072
37.
Ambrosini
,
W.
,
2009
, “
Discussion on the Stability of Heated Channels With Different Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2952
2963
.10.1016/j.nucengdes.2009.09.010
38.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2010
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon in Supercritical Water Through Vertical Tube
,”
Ann. Nucl. Energy
,
37
(
10
), pp.
1272
1280
.10.1016/j.anucene.2010.05.022
39.
De Rosa
,
M.
,
Guetta
,
G.
,
Ambrosini
,
W.
,
Forgione
,
N.
,
He
,
S.
, and
Jackson
,
J. D.
, “
Lessons Learned From the Application of CFD Models in the Prediction of Heat Transfer to Fluids at Supercritical Pressure
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5)
, Vancouver, BC, Canada, Mar. 13–16, pp.
13
16
.
40.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2016
, “
A New Correlation for the Turbulent Prandtl Number in Upward Rounded Tubes in Supercritical Fluid Flows
,”
ASME J. Heat Transfer
,
138
(
8
), p.
081701
.10.1115/1.4033137
41.
Tang
,
G.
,
Shi
,
H.
,
Wu
,
Y.
,
Lu
,
J.
,
Li
,
Z.
,
Liu
,
Q.
, and
Zhang
,
H.
,
2016
, “
A Variable Turbulent Prandtl Number Model for Simulating Supercritical Pressure CO2 Heat Transfer
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1082
1092
.10.1016/j.ijheatmasstransfer.2016.06.046
42.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
,
Berlin
.
43.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2011
, “
Effect of Turbulent Prandtl Number on Convective Heat Transfer to Turbulent Flow of a Supercritical Fluid in a Vertical Round Tube
,”
ASME J. Heat Transfer
,
133
(
7
), pp.
295
302
.10.1115/1.4003570
44.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
45.
Hollingsworth
,
D.
,
Kays
,
W.
, and
Moffat
,
R.
,
1989
, “
Measurement and Prediction of the Turbulent Thermal Boundary Layer in Water on Flat and Concave Surfaces
,” Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA, Report No. HMT-41.
46.
Myong
,
H. K.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1989
, “
Numerical Prediction of Turbulent Pipe Flow Heat Transfe for Various Prandtl Number Fluids With the Improved k-ε Turbulence Model
,”
JSME Int. J., Ser. II
,
32
(
4
), pp.
613
622
.10.1016/S0889-9746(89)90164-3
47.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
48.
Watts
, and
John
,
M.
,
1980
, “
Heat Transfer to Supercritical Pressure Water: Mixed Convection With Upflow or Downflow in a Vertical Tube
,” Ph.D. thesis, The University of Manchester, Manchester, UK.
49.
Zhao
,
M.
,
Li
,
H.
,
Zhang
,
G.
,
Gu
,
H.
,
Wang
,
L.
, and
Cheng
,
X.
,
2012
, “
Experimental Study on Heat Transfer to Supercritical Water Flowing in Circular Tubes
,”
At. Energy Sci. Technol.
,
46
, pp.
250
254
. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs2012z1053
50.
Li
,
Z.
,
Wu
,
Y.
,
Tang
,
G.
,
Zhang
,
D.
, and
Lu
,
J.
,
2015
, “
Comparison Between Heat Transfer to Supercritical Water in a Smooth Tube and in an Internally Ribbed Tube
,”
Int. J. Heat Mass Transfer
,
84
, pp.
529
541
.10.1016/j.ijheatmasstransfer.2015.01.047
51.
Li
,
Z.
,
Wu
,
Y.
,
Lu
,
J.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2014
, “
Heat Transfer to Supercritical Water in Circular Tubes With Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
190
200
.10.1016/j.applthermaleng.2014.05.013
You do not currently have access to this content.