Abstract

The 300 MWel small Canadian supercritical water-cooled reactor (SCWR), which is a scaled-down version of the original 1200 MWel concept, has a smaller core, uses low enriched uranium fuel instead of a plutonium–thorium fuel, and features a lower (maximum) cladding temperature of 500 °C. The lower cladding temperature may permit the use of different alloys, including zirconium alloys, which had been ruled out as candidates for the Canadian SCWR, whose cladding temperature may reach 850 °C. The potential to use zirconium alloys is exciting because they have a low neutron cross section, which in turn means that fewer neutrons are lost, and the fuel can be used more efficiently. One advantage, for example,, is that the fuel cycle can be lengthened. In this paper, we report on the results of corrosion experiments used to screen zirconium- and titanium-based alloys as well as corrosion-resistant coating materials such as Cr and Al as potential candidates for fuel cladding in the small Canadian SCWR. These experiments were conducted in a refreshed autoclave in deaerated supercritical water at 500 °C and 23.5 MPa. After exposure, the weight gain was measured, and the oxide thickness and the oxide phases were examined. Of all materials, the coated and uncoated Ti-grade 2 and Ti-grade 5 alloys met our screening qualification criteria, however, Al/Cr-coated zirconium coupons showed notable improvement and will be explored further in future testing.

References

1.
Nava Dominguez
,
A.
,
Onder
,
N.
,
Rao
,
Y.
, and
Leung
,
L.
,
2016
, “
Evolution of the Canadian SCWR Fuel-Assembly Concept and Assessment of the 64 Element Assembly for Thermalhydraulic Performance
,”
CNL Nucl. Rev.
,
5
(
2
), pp.
221
238
.
2.
Yetisir
,
M.
,
Hamilton
,
H.
,
Xu
,
R.
,
Gaudet
,
M.
,
Rhodes
,
D.
,
King
,
M.
,
Andrew
,
K.
, and
Benson
,
B.
,
2018
, “
Fuel Assembly Concept of the Canadian Supercritical Water-Cooled Reactor
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
4
(
1
), p.
011010
.10.1115/1.4037818
3.
Kaneda
,
J.
,
Kasahara
,
S.
,
Kano
,
F.
,
Saito
,
N.
,
Shikama
,
T.
, and
Matsui
,
H.
,
2011
, “
Material Development for Supercritical Water-Cooled Reactor
,”
Fifth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5)
, Vancouver, BC, Canada, Mar. 13–16, p.
18
.
4.
Khatamian
,
D.
,
2013
, “
Corrosion and Deuterium Uptake of Zr-Based Alloys in Supercritical Water
,”
J. Supercrit. Fluids
,
78
, pp.
132
142
.10.1016/j.supflu.2013.03.013
5.
Motta
,
A. T.
,
Yilmazbayhan
,
A.
,
Gomes da Silva
,
M. J.
,
Comstock
,
R. J.
,
Was
,
G. S.
,
Busby
,
J. T.
,
Gartner
,
E.
,
Peng
,
Q.
,
Jeong
,
Y. H.
, and
Park
,
J. Y.
,
2007
, “
Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
61
75
.10.1016/j.jnucmat.2007.05.022
6.
Peng
,
Q.
,
Gartner
,
E.
,
Busby
,
J. T.
,
Motta
,
A. T.
, and
Was
,
G. S.
,
2007
, “
Corrosion Behavior of Model Zirconium Alloys in Deaerated Supercritical Water at 500 °C
,”
Corrosion
,
63
(
6
), pp.
577
590
.10.5006/1.3278408
7.
Kaneda
,
J.
,
Kasahara
,
S.
,
Kuniya
,
J.
,
Kano
,
F.
,
Takahashi
,
H.
, and
Matsui
,
H.
,
2007
, “
Material Properties of Stainless Steels Modified With Addition of Zirconium for Supercritical Water-Cooled Reactor
,”
Proceedings of ICAPP
, Nice, France, May 13–16, Paper No. 7500.
8.
Behnamian
,
Y.
,
Mostafaei
,
A.
,
Kohandehghan
,
A.
,
Amirkhiz
,
B. S.
,
Serate
,
D.
,
Sun
,
Y.
,
Liu
,
S.
,
Aghaie
,
E.
,
Zeng
,
Y.
,
Chmielus
,
M.
,
Zheng
,
W.
,
Guzonas
,
D.
,
Chen
,
W.
, and
Luo
,
J. L.
,
2016
, “
A Comparative Study of Oxide Scales Grown on Stainless Steel and Nickel-Based Superalloys in Ultra-High Temperature Supercritical Water at 800 °C
,”
Corros. Sci.
,
106
, pp.
188
207
.10.1016/j.corsci.2016.02.004
9.
Kasahara
,
S.
,
Kuniya
,
J.
,
Moriya
,
K.
,
Saito
,
N.
, and
Shiga
,
S.
,
2003
, “
General Corrosion of Iron, Nickel and Titanium Alloys as Candidate Materials for the Fuel Claddings of the Supercritical-Water Cooled Power Reactor
,”
Proceedings of GENES4/ANP2003
, Kyoto, Japan, Sept. 15–19, Paper No.
1132
.https://www.ipen.br/biblioteca/cd/genes4/2003/papers/1132-final.pdf
10.
Tang
,
X.
,
Wang
,
S.
,
Qian
,
L.
,
Li
,
Y.
,
Lin
,
Z.
,
Xu
,
D.
, and
Zhang
,
Y.
,
2015
, “
Corrosion Behavior of Nickel Base Alloys, Stainless Steel and Titanium Alloy in Supercritical Water Containing Chloride, Phosphate and Oxygen
,”
Chem. Eng. Res. Des.
,
100
, pp.
530
541
.10.1016/j.cherd.2015.05.003
11.
Tang
,
X.
,
Wang
,
S.
,
Qian
,
L.
, and
Lu
,
J.
,
2013
, “
Selection of Material With High Salt Concentration in Preheating Section of Supercritical Water Oxidation System
,”
Adv. Mater. Res.
,
788
, pp.
440
443
.10.4028/www.scientific.net/AMR.788.440
12.
Vazquez
,
C.
,
Fortis
,
A. M.
, and
Bozzano
,
P. B.
,
2015
, “
Comparison of Mechanical Properties of Zr-1%Nb and Zr-2.5%Nb Alloys
,”
Procedia Mater. Sci.
,
8
, pp.
478
485
.10.1016/j.mspro.2015.04.099
13.
Saito
,
N.
,
Tsuchiya
,
Y.
,
Akai
,
Y.
,
Omura
,
H.
,
Takada
,
T.
, and
Hara
,
N.
,
2006
, “
Corrosion Performance of Metals for Supercritical Water, Oxidation-Utilized Organic Waste-Processing Reactors
,”
Corros. Sci. Sel.
,
62
(
5
), pp.
383
394
.10.5006/1.3278276
14.
Lu
,
J. S.
,
Mao
,
Z. Y.
,
Zhang
,
J. Y.
,
Ma
,
C.
,
Mao
,
X. B.
, and
Li
,
X. H.
,
2002
, “
Corrosion of Titanium in Supercritical Water Oxidation Environments
,”
Trans. Nonferrous Met. Soc. China
,
12
(
6
), pp.
1054
1057
.
15.
Hatakeda
,
K.
,
Ikushima
,
Y.
,
Saito
,
N.
,
Liew
,
C. C.
, and
Aizawa
,
T.
,
2001
, “
Corrosion on Continuous Supercritical Water Oxidation for Polychlorinated Biphenyls
,”
High Pressure Res.
,
20
(
1–6
), pp.
393
401
.10.1080/08957950108206187
You do not currently have access to this content.