Abstract

The constructive solid geometry (CSG) method is widely used in the Monte Carlo community because of its geometry flexibility. As the requirements of designing new reactors and development of deterministic methods, the CSG method is adopted for the geometry modeling in the deterministic numerical nuclear reactor physics codes to construct complex geometries in recent years. In the new developed numerical nuclear reactor physics code NECP-X, the CSG method is also implemented to expand its geometric modeling capability, but it is difficult to efficiently calculate the volume of complex geometries. This work develops a new efficient method for calculating volume of arbitrarily complex geometries for NECP-X. Rather than implementing the sampling method, the new developed method is based on the characteristic ray information, which is used for the method of characteristics (MOC) sweeping in NECP-X. The implementation shows that this method is very convenient to be applied to the MOC codes. A set of cases such as pin-cell and hexagonal rod-bundle assembly problems are tested to show the accuracy and performance.

References

1.
Briesmeister
,
J. F.
,
1993
, “
MCNP-A General Monte Carlo N-Particle Transport Code, Version4A
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-12625.
2.
Romano
,
P. K.
, and
Forget
,
B.
,
2013
, “
The OpenMC Monte Carlo Particle Transport Code
,”
Ann. Nucl. Energy
,
51
, pp.
274
281
.10.1016/j.anucene.2012.06.040
3.
Wang
,
K.
,
Li
,
Z.
,
She
,
D.
,
Liang
,
J.
,
Xu
,
Q.
,
Qiu
,
Y.
,
Yu
,
J.
,
Sun
,
J.
,
Fan
,
X.
, and
Yu
,
G.
,
2015
, “
RMC – A Monte Carlo Code for Reactor Core Analysis
,”
Ann. Nucl. Energy
,
82
, pp.
121
129
.10.1016/j.anucene.2014.08.048
4.
Liu
,
Y.
,
Yong
,
J.
,
Zhang
,
H.
,
Yan
,
D.
, and
Sun
,
J.
,
2006
, “
A Quasi-Monte Carlo Method for Computing Areas of Point-Sampled Surfaces
,”
Comput. Aided Des.
,
38
(
1
), pp.
55
66
.10.1016/j.cad.2005.07.002
5.
Millman
,
D. L.
,
Griesheimer
,
D. P.
,
Nease
,
B. R.
, and
Snoeyink
,
J.
,
2012
, “
Robust Volume Calculations for Constructive Solid Geometry (CSG) Components in Monte Carlo Transport Calculations
,” Advances in Reactor Physics (PHYSOR 2012), Knoxville, TN, Apr. 15–20, Paper No. #273.
6.
Yang
,
X.
, and
Satvat
,
N.
,
2012
, “
MOCUM: A Two-Dimensional Method of Characteristics Code Based on Constructive Solid Geometry and Unstructured Meshing for General Geometries
,”
Ann. Nucl. Energy
,
46
, pp.
20
28
.10.1016/j.anucene.2012.03.009
7.
Tramm
,
J. R.
,
Smith
,
K.
,
Forget
,
B.
, and
Siegel
,
A. R.
,
2018
, “
A Random Ray Neutron Transport Code for Nuclear Reactor Simulation
,”
Ann. Nucl. Energy
,
112
, pp.
693
714
.10.1016/j.anucene.2017.10.015
8.
Tramm
,
J. R.
,
Smith
,
K.
,
Forget
,
B.
, and
Siegel
,
A. R.
,
2017
, “
The Random Ray Method for Neutral Particle Transport
,”
J. Comput. Phys.
,
324
, pp.
229
252
.10.1016/j.jcp.2017.04.038
9.
Chen
,
J.
,
Liu
,
Z.
,
Zhao
,
C.
,
He
,
Q.
,
Zu
,
T.
,
Cao
,
L.
, and
Wu
,
H.
,
2018
, “
A New High-Fidelity Neutronics Code NECP-X
,”
Ann. Nucl. Energy
,
116
, pp.
417
428
.10.1016/j.anucene.2018.02.049
10.
Halton
,
J. H.
,
1960
, “
On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals
,”
Numer. Math.
,
2
(
1
), pp.
84
90
.10.1007/BF01386213
11.
Godfrey
,
A. T.
,
2014
, “
VERA Core Physics Benchmark Progression Problem Specifications
,” Consortium for Advanced Simulation of LWRs, Oak Ridge National Laboratory, Oak Ridge, TN.
12.
Filippone
,
W. L.
,
Woolf
,
S.
, and
Lavigne
,
R. J.
,
1981
, “
Particle Transport Calculation With the Method of Streaming Rays
,”
Nucl. Sci. Eng.
,
77
(
2
), pp.
119
136
.10.13182/NSE81-A21346
13.
Liu
,
Z.
,
Wu
,
H.
,
Cao
,
L.
,
Chen
,
Q.
, and
Li
,
Y.
,
2011
, “
A New Three-Dimensional Method of Characteristics for the Neutron Transport Calculation
,”
Ann. Nucl. Energy
,
38
(
2–3
), pp.
447
454
.10.1016/j.anucene.2010.09.021
14.
Yamamoto
,
A.
,
Tabuchi
,
M.
,
Sugimura
,
N.
,
Ushio
,
T.
, and
Mori
,
M.
,
2007
, “
Derivation of Optimum Polar Angle Quadrature Set for the Method of Characteristics Based on Approximation Error for the Bickley Function
,”
J. Nucl. Sci. Technol.
,
44
(
2
), pp.
129
136
.10.1080/18811248.2007.9711266
15.
Zheng
,
Y.
,
Choi
,
S.
, and
Lee
,
D.
,
2017
, “
A New Approach to Three-Dimensional Neutron Transport Solution Based on the Method of Characteristics and Linear Axial Approximation
,”
J. Comput. Phys.
,
350
(
1
), pp.
25
44
.10.1016/j.jcp.2017.08.026
16.
Zhao
,
C.
,
Liu
,
Z.
,
Liang
,
L.
,
Chen
,
J.
,
Cao
,
L.
, and
Wu
,
H.
,
2018
, “
Improved Leakage Splitting Method for the 2D/1D Transport Calculation
,”
Prog. Nucl. Energy
,
105
, pp.
202
210
.10.1016/j.pnucene.2018.01.007
You do not currently have access to this content.