Abstract

In the pebble-bed high-temperature reactor under construction in China, called the HTR-PM, the spherical fuel elements continuously flow downward in the cylindrical core. The burnup of each pebble is checked at the core outlet and, according to the achieved burnup level, the pebble might be disposed or reinserted into the upper section of the core. Upon reinsertion, each pebble is radially distributed in a random manner and, according to its downward path, faces different burnup conditions. Hence, the number of passes necessary to achieve the average discharge burnup of 90 MWd/kgU may vary. Discrete element method (DEM) simulations have been carried out to achieve a clear understanding of the movement of the 420000 fuel pebbles in the HTR-PM core. At the same time, neutronics properties have been investigated for a single pebble and for the full core with the Serpent 2 Monte Carlo code. As a result, one-group microscopic cross sections (XS) have been parametrized at the core level. The pebble movement has been loosely coupled with the depletion of a single pebble in a dedicated burnup script called moving pebble burnup (MPB), developed in matlab. 3000 single pebble burnup histories were simulated to obtain sufficient statistics and an insight into the HTR-PM burnup process. The decrease of the average burnup gained per single pass implies that a miss-handling of recirculated fuel elements is unlikely to lead to an excess of the maximum allowed burnup of 100 MWd/kgU. The core demonstrates a self-compensation effect of burnup, meaning that it always compensates burnup under- or over-runs in the successive passes. In addition, gamma detection of 137Cs has been studied as a practical method for monitoring the burnup of the discharged pebbles, turning out to be an applicable measurement technique. Finally, it is possible to conclude that the fuel cycle of the HTR-PM, as it has been laid out, is well designed and feasible.

References

1.
Nickel
,
H.
,
Nabielek
,
H.
,
Pott
,
G.
, and
Mehner
,
A.
,
2002
, “
Long Time Experience With the Development of HTR Fuel Elements in Germany
,”
Nucl. Eng. Des.
,
217
(
1–2
), pp.
141
151
.10.1016/S0029-5493(02)00128-0
2.
Zhang
,
Z.
,
Dong
,
Y.
,
Li
,
F.
,
Zhang
,
Z.
,
Wang
,
H.
,
Huang
,
X.
,
Li
,
H.
,
Liu
,
B.
,
Wu
,
X.
,
Wang
,
H.
,
Diao
,
X.
,
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation
,”
Engineering
,
2
(
1
), pp.
112
118
.10.1016/J.ENG.2016.01.020
3.
Krepel
,
J.
, and
Losa
,
E.
,
2019
, “
Closed U-Pu and Th-U Cycle in Sixteen Selected Reactors: Comparison of Major Equilibrium Features
,”
Ann. Nucl. Energy
,
128
, pp.
341
357
.10.1016/j.anucene.2019.01.013
4.
Zhang
,
Z.
,
Wu
,
Z.
,
Wang
,
D.
,
Xu
,
Y.
,
Sun
,
Y.
,
Li
,
F.
, and
Dong
,
Y.
,
2009
, “
Current Status and Technical Description of Chinese 2 x 250 MWth HTR-PM Demonstration Plant
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1212
1219
.10.1016/j.nucengdes.2009.02.023
5.
Teuchert
,
E.
,
Hansen
,
U.
, and
Haas
,
K.
,
1980
, “
V.S.O.P.—Computer Code System for Reactor Physics and Fuel Cycle Simulation
,” Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung, Jülich, Germany, Report No. JUEL-1649.
6.
Terry
,
W.
,
Gougar
,
H.
, and
Ougouag
,
A.
,
2002
, “
Direct Deterministic Method for Neutronics Analysis and Computation of Asymptotic Burnup Distribution in a Recirculating Pebble-Bed Reactor
,”
Ann. Nucl. Energy
,
29
(
11
), pp.
1345
1364
.10.1016/S0306-4549(01)00110-4
7.
Setiadipura
,
T.
, and
Obara
,
T.
,
2014
, “
Development of Monte Carlo-Based Pebble Bed Reactor Fuel Management Code
,”
Ann. Nucl. Energy
,
71
, pp.
313
321
.10.1016/j.anucene.2014.04.010
8.
Reitsma
,
F.
,
2004
, “
The Pebble Bed Modular Reactor Layout and Neutronics Design of the Equilibrium Cycle
,”
PHYSOR-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments
, Chicago, IL, Apr. 25–29, pp.
25
29
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.7958&rep=rep1&type=pdf
9.
Cogliati
,
J. J.
, and
Ougouag
,
A. M.
,
2006
, “
Pebbles: A Computer Code for Modeling Packing, Flow, and Re- Circulation of Pebbles in a Pebble Bed Reactor
,”
Third International Topical Meeting on High Temperature Reactor Technology
, Johannesburg, South Africa, Oct. 1–4, Report No. INL/CON-06-11790.
10.
Rycroft
,
C. H.
,
Dehbi
,
A.
,
Lind
,
T.
, and
Güntay
,
S.
,
2013
, “
Granular Flow in Pebble-Bed Nuclear Reactors: Scaling, Dust Generation, and Stress
,”
Nucl. Eng. Des.
,
265
, pp.
69
84
.10.1016/j.nucengdes.2013.07.010
11.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Gotechnique
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
12.
Kadak
,
A. C.
, and
Bazant
,
M. Z.
,
2004
, “
Pebble Flow Experiments for Pebble-Bed Reactors
,”
Second International Topical Meeting on High Temperature Reactor Technology
, Beijing, China, Sept. 22–24, pp.
22
24
.
13.
Yu
,
X.
, and
Yu
,
S.
,
2010
, “
Analysis of Fuel Element Matrix Graphite Corrosion in HTR-PM for Normal Operating Conditions
,”
Nucl. Eng. Des.
,
240
(
4
), pp.
738
743
.10.1016/j.nucengdes.2009.12.015
14.
Zheng
,
Y.
,
Shi
,
L.
, and
Dong
,
Y.
,
2009
, “
Thermohydraulic Transient Studies of the Chinese 200 MWe HTR-PM for Loss of Forced Cooling Accidents
,”
Ann. Nucl. Energy
,
36
(
6
), pp.
742
751
.10.1016/j.anucene.2009.02.007
15.
Leppänen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
16.
Chadwick
,
M.
,
Herman
,
M.
,
Obložinský
,
P.
,
Dunn
,
M.
,
Danon
,
Y.
,
Kahler
,
A.
,
Smith
,
D.
,
Pritychenko
,
B.
,
Arbanas
,
G.
,
Arcilla
,
R.
,
Brewer
,
R.
,
Brown
,
D.
,
Capote
,
R.
,
Carlson
,
A.
,
Cho
,
Y.
,
Derrien
,
H.
,
Guber
,
K.
,
Hale
,
G.
,
Hoblit
,
S.
,
Holloway
,
S.
,
Johnson
,
T.
,
Kawano
,
T.
,
Kiedrowski
,
B.
,
Kim
,
H.
,
Kunieda
,
S.
,
Larson
,
N.
,
Leal
,
L.
,
Lestone
,
J.
,
Little
,
R.
,
McCutchan
,
E.
,
MacFarlane
,
R.
,
MacInnes
,
M.
,
Mattoon
,
C.
,
McKnight
,
R.
,
Mughabghab
,
S.
,
Nobre
,
G.
,
Palmiotti
,
G.
,
Palumbo
,
A.
,
Pigni
,
M.
,
Pronyaev
,
V.
,
Sayer
,
R.
,
Sonzogni
,
A.
,
Summers
,
N.
,
Talou
,
P.
,
Thompson
,
I.
,
Trkov
,
A.
,
Vogt
,
R.
,
van der Marck
,
S.
,
Wallner
,
A.
,
White
,
M.
,
Wiarda
,
D.
, and
Young
,
P.
,
2011
, “
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
,”
Nucl. Data Sheets
,
112
(
12
), pp.
2887
2996
.10.1016/j.nds.2011.11.002
17.
Tang
,
C.
,
Tang
,
Y.
,
Zhu
,
J.
,
Zou
,
Y.
,
Li
,
J.
, and
Ni
,
X.
,
2002
, “
Design and Manufacture of the Fuel Element for the 10 MW High Temperature Gas-Cooled Reactor
,”
Nucl. Eng. Des.
,
218
(
1–3
), pp.
91
102
.10.1016/S0029-5493(02)00201-7
18.
Suikkanen
,
H.
,
Rintala
,
V.
, and
Hyvärinen
,
J.
,
2017
, “
DEM in Analyses of Nuclear Pebble Bed Reactors
,”
Seventh International Conference on Discrete Element Methods
, Dalian, China, Aug. 14, pp.
1183
1191
.
19.
Pusa
,
M.
,
2016
, “
Higher-Order Chebyshev Rational Approximation Method and Application to Burnup Equations
,”
Nucl. Sci. Eng.
,
182
(
3
), pp.
297
318
.10.13182/NSE15-26
You do not currently have access to this content.