Abstract

In a reactor core meltdown under postulated severe accidents, the molten material called corium could be ejected or relocated through existing vessel penetrations. There exists, however, a potential for plugging of melt flow due to its complete solidification providing the availability of an adequate heat sink. Simulations of the melt flow in a horizontal tube were carried out to conduct a sensitivity study on the effect of key parameters on the melt penetration distance and bulk temperature distribution of the corium. The Reynolds number was varied from 10,000 to 20,000, inlet temperature was varied from 2600 K to 3000 K, the corium thermal conductivity was varied from 10 W/m·K to 20 W/m·K, and the pipe diameter was varied from 0.0095 m to 0.019 m. In addition, a comparison was made with an analytical model based on a modified Epstein's model and a previous numerical model. The study provided insight into the lower bound, which was found to be 98 mm, and the upper bound was 258 mm when predicting the potential penetration length of corium in horizontal pipes.

References

1.
Jacquemain
,
D.
,
2015
,
Nuclear Power Reactor Core Melt Accidents
,
EDP Sciences
, Les Ulis, France.
2.
Epstein
,
M.
,
Yim
,
A.
, and
Cheung
,
F. B.
,
1977
, “
Freezing-Controlled Penetration of a Saturated Liquid Into a Cold Tube
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
233
238
.10.1115/1.3450674
3.
Sadeghipour
,
M. S.
,
Özişik
,
M. N.
, and
Mulligan
,
J. C.
,
1981
, “
Transient Solidification of Liquid Metals in the Thermal Entry Region of a Circular Tube
,”
Nucl. Sci. Eng.
,
79
(
1
), pp.
9
18
.10.13182/NSE81-A19038
4.
Sadeghipour
,
M. S.
,
Özişik
,
M. N.
, and
Mulligan
,
J. C.
,
1982
, “
Transient Freezing of a Liquid in a Convectively Cooled Tube
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
316
322
.10.1115/1.3245090
5.
Seeniraj
,
R. V.
, and
Hari
,
G. S.
,
2008
, “
Transient Freezing of Liquids in Forced Flow Inside Convectively Cooled Tubes
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
786
792
.10.1016/j.icheatmasstransfer.2008.01.012
6.
Wei
,
S.-S.
, and
Guceri
,
S. I.
,
1988
, “
Solidification in Developing Pipe Flows
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
225
232
.10.1016/0142-727X(88)90076-8
7.
Lee
,
S. L.
, and
Hwang
,
G. J.
,
1989
, “
Liquid Solidification in Low Peclet Number Pipe Flows
,”
Can. J. Chem. Eng.
,
67
(
4
), pp.
569
577
.10.1002/cjce.5450670407
8.
Yeow
,
Y. L.
,
Gethin
,
D. T.
, and
Lewis
,
R. W.
,
1990
, “
Solidification at the Entrance to a Subcooled Tube
,”
Ind. Eng. Chem. Res.
,
29
(
5
), pp.
896
901
.10.1021/ie00101a027
9.
Sadeghipour
,
M. S.
, and
Alborzi
,
K.
,
1994
, “
Axial Conduction in the Transient Laminar Freezing of Liquids in Convectively Cooled Tubes
,”
Numer. Heat Transfer, Part A: Appl.
,
25
(
4
), pp.
427
439
.10.1080/10407789408955958
10.
Barron
,
M. A.
,
Lopez
,
C.
, and
Medina
,
D. Y.
,
2014
, “
Heat Transfer and Solidification of Molten Iron in a Pipe
,”
Adv. Res.
,
2
(
12
), pp.
987
1002
.10.9734/AIR/2014/11625
11.
Sugawara
,
M.
,
Komatsu
,
Y.
, and
Beer
,
H.
,
2015
, “
Three-Dimensional Freezing of Flowing Water in a Tube Cooled by Air Flow
,”
Heat Mass Transfer
,
51
(
5
), pp.
703
711
.10.1007/s00231-014-1444-8
12.
Zerkle
,
R. D.
, and
Sunderland
,
J. E.
,
1968
, “
The Effect of Liquid Solidification in a Tube Upon Laminar-Flow Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
90
(
2
), pp.
183
190
.10.1115/1.3597471
13.
Depew
,
C. A.
, and
Zenter
,
R. C.
,
1969
, “
Laminar Flow Heat Transfer and Pressure Drop With Freezing at the Wall
,”
Int. J. Heat Mass Transfer
,
12
(
12
), pp.
1710
1714
.10.1016/0017-9310(69)90104-5
14.
Hwang
,
G. J.
, and
Sheu
,
J. P.
,
1976
, “
Liquid Solidification in Combined Hydrodynamic and Thermal Entrance Region of a Circular Tube
,”
Can. J. Chem. Eng.
,
54
(
1–2
), pp.
66
71
.10.1002/cjce.5450540109
15.
Liu
,
H.-L.
, and
Hwang
,
G. J.
,
1977
, “
An Experiment on Liquid Solidification in Thermal Entrance Region of a Circular Tube
,”
Lett. Heat Mass Transfer
,
4
(6), pp.
437
444
.10.1016/0094-4548(77)90103-5
16.
Mulligan
,
J. C.
, and
Jones
,
D. D.
,
1976
, “
Experiments on Heat Transfer and Pressure Drop in a Horizontal Tube With Internal Solidification
,”
Int. J. Heat Mass Transfer
,
19
(
2
), pp.
213
219
.10.1016/0017-9310(76)90115-0
17.
Thomason
,
S. B.
,
Mulligan
,
J. C.
, and
Everhart
,
J.
,
1978
, “
The Effect of Internal Solidification on Turbulent Flow Heat Transfer and Pressure Drop in a Horizontal Tube
,”
ASME J. Heat Transfer
,
100
(
3
), pp.
387
394
.10.1115/1.3450820
18.
Gilpin
,
R. R.
,
1979
, “
The Morphology of Ice Structure in a Pipe at or Near Transition Reynolds Numbers
,”
AICHE Symposium Series
, San Diego, CA, pp.
89
94
.
19.
Gilpin
,
R. R.
,
1981
, “
Ice Formation in a Pipe Containing Flows in the Transition and Turbulent Regimes
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
363
368
.10.1115/1.3244467
20.
Hirata
,
T.
, and
Ishihara
,
M.
,
1985
, “
Freeze-Off Conditions of a Pipe Containing a Flow of Water
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
331
337
.10.1016/0017-9310(85)90066-3
21.
Hirata
,
T.
, and
Matsuzawa
,
H.
,
1987
, “
A Study of Ice Formation Phenomena on Freezing of Flowing Water in Pipe
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
965
970
.10.1115/1.3248211
22.
Tang
,
V.
,
Spencer
,
J.
, and
Tang
,
J.
,
2016
, “
The Effect of the Molten Corium Temperature on the Predicted Melt Penetration
,”
13th International Conference on CANDU Fuel
, Kingston, ON, Canada, Aug. 15–18, pp.
1
8
.
23.
Somers-Neal
,
S.
,
Nguyen
,
V.
,
Matida
,
E.
,
Tang
,
V.
, and
Kaya
,
T.
,
2018
, “
Unsteady Sensitivity Analysis of Corium Solidification in a Horizontal Pipe Flow
,”
Eighth International Conference on Simulation Methods in Nuclear Science and Engineering
, Ottawa, ON, Canada, Oct. 9–11.
24.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
94
95
.
25.
Incropera
,
D.
, and
Bergman
,
L.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed., Wiley,
New York
.
You do not currently have access to this content.