Abstract

Many factors need to be investigated before alternative nuclear fuel can be adapted for service in the harsh environment of a nuclear reactor. Urania, used conventionally as a nuclear fuel, has a low thermal conductivity, which degrades with increasing stoichiometric deviation. Thoria-based fuel has been considered as an alternative fuel, since it does not oxidize and has a high melting point and higher thermal conductivity. Simulations have shown that the fuel melting observed in urania fuel rods during an accident with steam ingress should not be observed (or will be delayed) in thoria as its thermal conductivity remains high enough to dissipate excessive heat in the center of the fuel pellets. The thermal gradient also remains low and therefore thermal stress is reduced, which should improve the longevity of the fuel. Thoria also has some other desirable properties as our calculations predict a significantly higher temperature of oxygen lattice premelting than urania. Furthermore, we found that the diffusion of fission gas, e.g., helium, is strongly affected by oxygen diffusion and therefore is slower in thoria for the temperatures where the oxygen lattice premelts in urania, but not in thoria.

References

1.
Szpunar
,
B.
,
Szpunar
,
J. A.
, and
Sim
,
K. S.
,
2016
, “
Theoretical Investigation of Structural and Thermo-Mechanical Properties of Thoria
,”
J. Phys. Chem. Solids
,
90
, pp.
114
120
.10.1016/j.jpcs.2015.10.011
2.
Malakkal
,
L.
,
Szpunar
,
B.
,
Siripurapu
,
R. K.
,
Zuniga
,
J.
, and
Szpunar
,
J. A.
,
2017
, “
First Principle Calculation of Thermo-Mechanical Properties of Thoria Using Quantum Espresso
,”
Int. J. Comput. Mater. Sci. Eng.
,
128
, pp.
249
256
.10.1016/j.commatsci.2016.11.040
3.
Belle
,
J.
, and
Berman
,
R. M.
eds.,
1984
, “
Thorium Dioxide: Properties and Nuclear Application
,” U.S. Department of Energy, Washington, DC, Report No. DOE-NE-0060.
4.
Szpunar
,
B.
,
Malakkal
,
L.
,
Chung
,
S.
,
Mateen Butt
,
M.
,
Jossou
,
E.
, and
Szpunar
,
J. A.
,
2017
, “
Accident Tolerant Composite Nuclear Fuels
,”
MATEC Web Conf.
,
130
, p.
03001
.10.1051/matecconf/201713003001
5.
Szpunar
,
B.
, and
Szpunar
,
J. A.
,
2014
, “
Theoretical Investigation of Structural and Thermo-Mechanical Properties of Thoria Up to 3300 K Temperature
,”
Solid State Sci.
,
36
, pp.
36
40
.10.1016/j.solidstatesciences.2014.07.004
6.
Ronchi
,
C.
, and
Hiernaut
,
J. P.
,
1996
, “
Experimental Measurement of Pre-Melting and Melting of Thorium Dioxide
,”
J. Alloys Compd.
,
240
(
1–2
), pp.
179
185
.10.1016/0925-8388(96)02329-8
7.
Bakker
,
K.
,
Cordfunke
,
E. H. P.
,
Konings
,
R. J. M.
, and
Schram
,
R. P. C.
,
1997
, “
Critical Evaluation of the Thermal Properties of Th02 and Th1−yUy02 and a Survey of the Literature Data on Th1−yPuy02
,”
J. Nucl. Mater.
,
250
(
1
), pp.
1
12
.10.1016/S0022-3115(97)00241-9
8.
Hutchings
,
M. T.
,
1987
, “
New Insights Into the Thermal Expansion of Neptunium Dioxide Up to 2000 K
,”
J. Chem. Soc., Faraday Trans.
,
83
(
7
), pp.
1083
1103
.10.1039/f29878301083
9.
Andersen
,
H. C.
,
1980
, “
Molecular Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.10.1063/1.439486
10.
Hoover
,
W.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
, pp.
1695
1697
.10.1103/PhysRevA.31.1695
11.
Nosé
,
S.
,
1991
, “
Constant Temperature Molecular Dynamics Methods
,”
Prog. Theory Phys. Suppl.
,
103
, pp.
1
46
.10.1143/PTPS.103.1
12.
Vanderbilt
,
D.
,
1990
, “
Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism
,”
Phys. Rev. B
,
41
(
11
), pp.
7892
7895
.10.1103/PhysRevB.41.7892
13.
Segall
,
M. D.
,
Lindan
,
P. L. D.
,
Probert
,
M. J.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Clark
,
S. J.
, and
Payne
,
J. D.
,
2002
, “
First-Principles Simulation: Ideas, Illustrations and the CASTEP Code
,”
J. Phys. Condens. Mater.
,
14
(
11
), pp.
2717
2743
.10.1088/0953-8984/14/11/301
14.
Wu
,
Z.
, and
Cohen
,
R. E.
,
2006
, “
More Accurate Generalized Gradient Approximation for Solids
,”
Phys. Rev. B
,
73
, p.
235116
.10.1103/PhysRevB.73.235116
15.
Aguiar
,
J. A.
,
Grönbech-Jensen
,
N.
,
Perlov
,
A.
,
Milman
,
V.
,
Gao
,
S. P.
,
Pickard
,
C. J.
, and
Browning
,
N. D.
,
2010
, “
Investigating the Electronic Structure of Fluorite-Structured Oxide Compounds: Comparison of Experimental EELS With First Principles Calculations
,”
J. Phys.: Conf. Ser.
,
241
, p.
012062
.10.1088/1742-6596/241/1/012062
16.
Szpunar
,
B.
,
Lewis
,
L. J.
,
Swainson
,
I.
, and
Erb
,
U.
,
1999
, “
Thermal Expansion and Hydrogen Diffusion in Nanocrystalline Nickel
,”
Phys. Rev. B
,
60
, pp.
10107
10113
.10.1103/PhysRevB.60.10107
17.
Szpunar
,
B.
,
Lewis
,
B. J.
,
Arimescu
,
V. I.
,
Dickson
,
R. S.
, and
Dickson
,
L. W.
,
2001
, “
Multi-Component Gas Transport in the Fuel-to-Clad Gap of CANDU Fuel Rods During Severe Accidents
,”
J. Nucl. Mater.
,
294
(
3
), pp.
315
329
.10.1016/S0022-3115(01)00422-6
18.
Szpunar
,
B.
,
Szpunar
,
J. A.
,
Milman
,
V.
, and
Goldberg
,
A.
,
2013
, “
Implication of Volume Changes in Uranium Oxides: A Density Functional Study
,”
Solid State Sci.
,
24
, pp.
44
63
.10.1016/j.solidstatesciences.2013.06.013
19.
Szpunar
,
B.
, and
Szpunar
,
J. A.
,
2013
, “
Thoria Enhancement of Nuclear Reactor Safety
,”
Phys. Int.
,
4
(
2
), pp.
110
119
.10.3844/pisp.2013.110.119
20.
Lewis
,
B. J.
,
Szpunar
,
B.
, and
Iglesias
,
F. C.
,
2002
, “
Fuel Oxidation and Thermal Conductivity Model for Operating Defective Fuel Rods
,”
J. Nucl. Mater.
,
306
(
1
), pp.
30
43
.10.1016/S0022-3115(02)01231-X
21.
Lucuta
,
P. G.
,
Matzke
,
H.
, and
Hastings
,
I. J.
,
1996
, “
A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel: Review and Recommendations
,”
J. Nucl. Mater.
,
232
(
2–3
), pp.
166
180
.10.1016/S0022-3115(96)00404-7
22.
Ellis
,
W. E.
,
Porter
,
J. D.
, and
Shaw
,
T. L.
,
2000
, “
The Effect of Oxidation, Burnup and Poisoning on the Thermal Conductivity of UO2: A Comparison of Data With Theory
,”
International Topical Meeting on Light Water Reactor Fuel Performance
, Park City, UT, Apr. 10–13, p.
715
.
23.
Reid
,
P. J.
,
Richards
,
M. J.
,
Iglesias
,
F. C.
, and
Brito
,
A. C.
,
1997
, “
SOURCE 2.0 Model Development: UO2 Thermal Properties
,”
Fifth International Conference on CANDU Fuel
, Toronto, ON, Canada, Sept. 21–25, pp.
321
341
.
24.
Fink
,
J. K.
,
2000
, “
Thermophysical Properties of Uranium Dioxide
,”
J. Nucl. Mater.
,
279
(
1
), pp.
1
18
.10.1016/S0022-3115(99)00273-1
You do not currently have access to this content.