Abstract

Stiffness confinement method (SCM) can effectively alleviate the stiffness in the neutron kinetics equation and can use larger time steps to obtain the same calculation accuracy and improve the computational efficiency. However, the existing SCM is mainly used to solve two group transient diffusion equations. In this paper, the SCM is employed to solve the multigroup transient transport calculation. On the basis of the original method of characteristics (MOC) code PEACH, the transient function is added, and the PEACH-K program is developed. Based on the numerical results of the latest published OECD/NEA C5G7-TD benchmark, it shows that the PEACH-K program developed in this paper has both high computing precision and good numerical stability.

References

1.
Chao
,
Y. A.
, and
Huang
,
P.
,
1989
, “
Theory and Performance of the Fast-Running Multidimensional Pressurized Water Reactor Kinetics Code, Spnova-k
,”
Nucl. Sci. Eng., U. S. A.
,
103
(
4
), pp.
415
419
.10.13182/NSE89-A23693
2.
Park
,
B. W.
, and
Han
,
G. J.
,
2015
, “
Improved Stiffness Confinement Method Within the Coarse Mesh Finite Difference Framework for Efficient Spatial Kinetics Calculation
,”
Ann. Nucl. Energy
,
76
, pp.
200
208
.10.1016/j.anucene.2014.09.029
3.
Grandi
,
G. M.
,
2009
, “
Effect of the Discretization and Neutronic Thermal Hydraulic Coupling on LWR Transients
,”
13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH-13
), Kanazawa City, Ishikawa Prefecture, Japan, Sept. 27–Oct. 2, p.
15
.https://www.researchgate.net/publication/228513067_Effect_of_the_Discretization_and_Neutronic_Thermal_Hydraulic_Coupling_on_LWR_Transients
4.
Deveney
,
R. C.
,
Hobson
,
G. H.
, and
Holman
,
P. L.
,
2000
, “
Science, Baw-10228-A
,”
Framatome Cogema Fuels
, accessed Sept. 10, 2019, https://www.nrc.gov/docs/ML0101/ML010110492.pdf
5.
Muller
,
E.
,
Mayhue
,
L.
, and
Zhang
,
B. C.
,
2007
, “
Reactor Physics Methods Development at Westinghouse
,”
International Conference Nuclear Energy for New Europe
, Portorož, Slovenia, Sept. 10–13, p.
8
.https://www.researchgate.net/publication/206011921_Reactor_Physics_Methods_Development_at_Westinghouse
6.
Tang
,
C.
, and
Zhang
,
S.
,
2009
, “
Development and Verification of an MOC Code Employing Assembly Modular Ray Tracing and Efficient Acceleration Techniques
,”
Ann. Nucl. Energy
,
36
(
8
), pp.
1013
1020
.10.1016/j.anucene.2009.06.007
7.
Boyarinov
,
V.
,
Fomichenko
,
P.
,
Hou
,
J.
,
Ivanov
,
K.
,
Aures
,
A.
,
Zwermann
,
W.
, and
Velkov
,
K.
,
2016
, “Deterministic Time-Dependent Neutron Transport Benchmark Without Spatial Homogenization (C5G7-TD),” Nuclear Energy Agency Organisation for Economic Co-operation and Development (NEA-OECD), Paris, France.
8.
Hou
,
J.
,
Ivanov
,
K.
,
Boyarinov
,
V.
, and
Fomichenko
,
P.
,
2017
, “
C5G7-TD Benchmark for Time-Dependent Heterogeneous Neutron Transport Calculations
,”
M&C 2017—International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
, Jeju, Korea, Apr. 16–20, p.
7
.
9.
Chen
,
J.
,
Liu
,
Z.
,
Chen
,
Z.
,
He
,
Q.
,
Zu
,
T.
,
Cao
,
L.
, and
Wu
,
H.
,
2018
, “
A New High-Fidelity Neutronics Code Necp-x
,”
Ann. Nucl. Energy
,
116
, pp.
417
428
.10.1016/j.anucene.2018.02.049
You do not currently have access to this content.