Abstract

The behavior of fission gas, notably accommodation within intra- and intergranular bubbles, influences the macroscopic properties and overall performance of oxide fuels. This work discusses progress to capture key fission gas-related phenomena with modern mesoscale techniques: the interaction of grain growth and irradiation by a phase-field crystal (PFC) method; overpressurized intragranular bubble migration in a vacancy gradient by a linearized phase-field model; and intergranular bubble interlinkage and percolation by the included phase model (IPM). An outlook on the impact of these models for the investigation of unit mechanisms of fission gas behavior and integration of them into fuel-performance codes is presented.

References

1.
Tonks
,
M.
,
Andersson
,
D.
,
Devanathan
,
R.
,
Dubourg
,
R.
,
El-Azab
,
A.
,
Freyss
,
M.
,
Iglesias
,
F.
,
Kulacsy
,
K.
,
Pastore
,
G.
,
Phillpot
,
S. R.
, and
Welland
,
M.
,
2018
, “
Unit Mechanisms of Fission Gas Release: Current Understanding and Future Needs
,”
J. Nucl. Mater.
,
504
, pp.
300
317
.10.1016/j.jnucmat.2018.03.016
2.
Evans
,
J. H.
,
1996
, “
The Role of Directed Bubble Diffusion to Grain Boundaries in Post-Irradiation Fission Gas Release From UO2: A Quantitative Assessment
,”
J. Nucl. Mater.
,
238
(
2–3
), pp.
175
182
.10.1016/S0022-3115(96)00452-7
3.
Welland
,
M. J.
,
Tenuta
,
E.
, and
Prudil
,
A. A.
,
2017
, “
Linearization-Based Method for Solving a Multicomponent Diffusion Phase-Field Model With Arbitrary Solution Thermodynamics
,”
Phys. Rev. E.
,
95
(
6
), p. 063312.10.1103/PhysRevE.95.063312
4.
White
,
R. J.
, and
Tucker
,
M. O.
,
1983
, “
A New Fission-Gas Release Model
,”
J. Nucl. Mater.
,
118
(
1
), pp.
1
38
.10.1016/0022-3115(83)90176-9
5.
White
,
R. J.
,
2001
, “
The Fractal Nature of the Surface of Uranium Dioxide: A Resolution of the Short-Lived/Stable Gas Release Dichotomy
,”
J. Nucl. Mater.
,
295
(
2–3
), pp.
133
148
.10.1016/S0022-3115(01)00571-2
6.
Millett
,
P. C.
,
Tonks
,
M. R.
,
Biner
,
S. B.
,
Zhang
,
L.
,
Chockalingam
,
K.
, and
Zhang
,
Y.
,
2012
, “
Phase-Field Simulation of Intergranular Bubble Growth and Percolation in Bicrystals
,”
J. Nucl. Mater.
,
425
(
1–3
), pp.
130
135
.10.1016/j.jnucmat.2011.07.034
7.
Prudil
,
A. A.
, and
Welland
,
M. J.
,
2017
, “
A Novel Model of Third Phase Inclusions on Two Phase Boundaries
,”
Mater. Theory
,
1
, p. 4.10.1186/s41313-017-0003-3
8.
Greenwood
,
M.
,
Shampur
,
K. N.
,
Ofori-Opoku
,
N.
,
Pinomaa
,
T.
,
Wang
,
L.
,
Gurevich
,
S.
, and
Provatas
,
N.
,
2018
, “
Quantitative 3D Phase Field Modelling of Solidification Using Next-Generation Adaptive Mesh Refinement
,”
Comput. Mater. Sci.
,
142
, pp.
153
171
.10.1016/j.commatsci.2017.09.029
9.
Welland
,
M. J.
,
Piro
,
M. H. A.
,
Hibbins
,
S.
, and
Wang
,
N.
,
2017
, “
A Method of Integrating CALPHAD Data Into Phase-Field Models Using an Approximated Minimiser Applied to Intermetallic Layer Growth in the Al-Mg System
,”
Calphad
,
59
, pp.
76
83
.10.1016/j.calphad.2017.07.008
10.
Welland
,
M. J.
,
Lewis
,
B. J.
, and
Thompson
,
W. T.
,
2008
, “
A Comparison of Stefan and Phase Field Modeling Techniques for the Simulation of Melting Nuclear Fuel
,”
J. Nucl. Mater.
,
376
(
2
), pp.
229
239
.10.1016/j.jnucmat.2008.03.003
11.
Piro
,
M. H. A.
,
Welland
,
M. J.
, and
Stan
,
M.
,
2015
, “
On the Interpretation of Chemical Potentials Computed From Equilibrium Thermodynamic Codes
,”
J. Nucl. Mater.
,
464
, pp.
48
52
.10.1016/j.jnucmat.2015.04.004
12.
Elder
,
K. R.
,
Katakowski
,
M.
,
Haataja
,
M.
, and
Grant
,
M.
,
2002
, “
Modeling Elasticity in Crystal Growth
,”
Phys. Rev. Lett.
,
88
(
24
), p. 063312.10.1103/PhysRevLett.88.245701
13.
Ofori-Opoku
,
N.
,
Hoyt
,
J. J.
, and
Provatas
,
N.
,
2012
, “
Phase-Field-Crystal Model of Phase and Microstructural Stability in Driven Nanocrystalline Systems
,”
Phys. Rev. E.
,
86
(
6
), p. 063312.10.1103/PhysRevE.86.066706
14.
Ofori-Opoku
,
N.
,
2013
, “
Modelling Microstructural Evolution in Materials Science
,” Ph.D. thesis,
McMaster
, Hamilton, ON, Canada.
15.
Turnbull
,
J. A.
, and
Cornell
,
R. M.
,
1971
, “
The Re-Solution of Fission-Gas Atoms From Bubbles During the Irradiation of UO2 at an Elevated Temperature
,”
J. Nucl. Mater.
,
41
(
2
), pp.
156
160
.10.1016/0022-3115(71)90075-4
16.
Garcia
,
P.
,
Martin
,
G.
,
Sabathier
,
C.
,
Carlot
,
G.
,
Michel
,
A.
,
Martin
,
P.
,
Dorado
,
B.
,
Freyss
,
M.
,
Bertolus
,
M.
,
Skorek
,
R.
,
Noirot
,
J.
,
Noirot
,
L.
,
Kaitasov
,
O.
, and
Maillard
,
S.
,
2012
, “
Nucleation and Growth of Intragranular Defect and Insoluble Atom Clusters in Nuclear Oxide Fuels
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
277
(
11
), p.
98
.10.1016/j.nimb.2011.12.031
17.
Turnbull
,
J. A.
,
1971
, “
The Distribution of Intragranular Fission Gas Bubbles in UO2 During Irradiation
,”
J. Nucl. Mater.
,
38
(
2
), pp.
203
212
.10.1016/0022-3115(71)90044-4
18.
Yakub
,
E.
,
Ronchi
,
C.
, and
Staicu
,
D.
,
2007
, “
Molecular Dynamics Simulation of Premelting and Melting Phase Transitions in Stoichiometric Uranium Dioxide
,”
J. Chem. Phys.
,
127
(
9
), p.
094508
.10.1063/1.2764484
19.
Plapp
,
M.
,
2011
, “
Unified Derivation of Phase-Field Models for Alloy Solidification From a Grand-Potential Functional
,”
Phys. Rev. E.
,
84
(
3
), p.
031601
.10.1103/PhysRevE.84.031601
20.
Kaplun
,
A. B.
, and
Meshalkin
,
A. B.
,
2003
, “
Thermodynamic Validation of the Form of Unified Equation of State for Liquid and Gas
,”
High Temp.
,
41
(
3
), pp.
319
326
.10.1023/A:1024230324555
21.
Xiao
,
H.-X.
, and
Long
,
C.-S.
,
2014
, “
A Modified Equation of State for Xe at High Pressures by Molecular Dynamics Simulation
,”
Chin. Phys. B.
,
23
(
2
), p.
020502
.10.1088/1674-1056/23/2/020502
22.
Prudil
,
A.
,
Lewis
,
B. J.
,
Chan
,
P. K.
, and
Baschuk
,
J. J.
,
2015
, “
Development and Testing of the FAST Fuel Performance Code: Normal Operating Conditions (Part 1)
,”
Nucl. Eng. Des.
,
282
, pp.
158
168
.10.1016/j.nucengdes.2014.09.036
23.
Ball
,
R. G. J.
, and
Grimes
,
R. W.
,
1992
, “
A Comparison of the Behaviour of Fission Gases in UO2±x and α-U3O8–z
,”
J. Nucl. Mater.
,
188
, pp.
216
221
.10.1016/0022-3115(92)90474-Y
24.
Welty
,
J. R.
,
Wicks
,
C. E.
, and
Wilson
,
R. E.
,
1984
,
Fundamentals of Momentum, Heat, and Mass Transfer
, 3rd ed.,
Wiley
,
New York
.
25.
Prudil
,
A. A.
,
Thomas
,
E. S.
, and
Welland
,
M. J.
,
2019
, “
Network Percolation Using a Two-Species Included Phase Model to Predict Fission Gas Accommodation and Venting
,”
J. Nucl. Mater.
,
515
, pp.
170
186
.10.1016/j.jnucmat.2018.12.036
26.
Thomas
,
E. S.
,
Prudil
,
A. A.
, and
Welland
,
M. J.
,
2018
, “
Mesoscale Simulations of Fission Gas Release a Two-Dimensional Implementation of the Shell Porosity Model
,” 42nd Annual CNS/CNA Student Conference, Saskatoon, SK, Canada, June 3–6.
27.
Millett
,
P. C.
,
Tonks
,
M. R.
, and
Biner
,
S. B.
,
2012
, “
Grain Boundary Percolation Modeling of Fission Gas Release in Oxide Fuels
,”
J. Nucl. Mater.
,
424
(
1–3
), pp.
176
182
.10.1016/j.jnucmat.2012.03.006
28.
Booth
,
A. H.
,
1957
, “
A Method of Calculating Fission Gas Diffusion From UO2 Fuel and Its Application to the X-2-f Loop Test
,” Atomic Energy of Canada Limited, Chalk River, Canada, Report No. AECL-00496.
You do not currently have access to this content.