Abstract

Uncertainty quantification has been recognized by the community as an essential component of best-estimate reactor analysis simulation because it provides a measure by which the credibility of the simulation can be assessed. In a companion paper, a framework for the propagation of nuclear data uncertainties from the multigroup level through lattice physics and core calculations and ultimately to core responses of interest has been developed. The overarching goal of this framework is to automate the propagation, prioritization, mapping, and reduction of uncertainties for reactor analysis core simulation. This paper employs both heavy and light water reactor systems to exemplify the application of this framework. Specifically, the paper is limited to the propagation of the nuclear data starting with the multigroup cross section covariance matrix and down to core responses, e.g., eigenvalue and power distribution, in steady-state core wide calculations. The goal is to demonstrate how the framework employs reduction techniques to compress the uncertainty space into a very small number of active degrees-of-freedom (DOFs), which renders the overall process computationally feasible for day-to-day engineering evaluations.

References

1.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2016
, “
SCALE Code System Version 6.2
,” Oak Ridge National Laboratory, Oak Ridge, TN, Standard No.
ORNL/TM-2005/39
.
2.
DeHart
,
M. D.
, and
Jessee
,
M. D.
,
2005
, “
NEWT: A New Transport Algorithm for Two-Dimensional Discrete Ordinates Analysis in Non-Orthogonal Geometries
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-2005/39.
3.
Williams
,
M. L.
,
Ilas
,
G.
,
Jessee
,
M. A.
,
Rearden
,
B. T.
,
Wiarda
,
D.
,
Zwermann
,
W.
,
Gallner
,
L.
,
Klein
,
M.
,
Krzykacz-Hausmann
,
B.
, and
Pautz
,
A.
,
2013
, “
A Statistical Sampling Method for Uncertainty Analysis With SCALE and XSUSA
,”
Nucl. Technol.
,
183
(
3
), pp.
515
526
.10.13182/NT12-112
4.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2019
, “
Theoretical Development of Cross-Section Uncertainty Library for Core Simulators
,”
ASME J. Nuclear Rad. Sci
. (accepted).10.1115/1.4045031
5.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2016
, “
Construction of Optimized Experimental Responses in Support of Model Validation Via Physics Coverage Mapping Methodology
,”
Proceedings of PHYSOR,
Vol.
2016
, pp.
1
5
.
6.
Bang
,
Y.
,
Abdel‐Khalik
,
H. S.
, and
Hite
,
J. M.
,
2012
, “
Hybrid Reduced Order Modeling Applied to Nonlinear Models
,”
Int. J. Numer. Methods Eng.
,
91
(
9
), pp.
929
949
.10.1002/nme.4298
7.
Turinsky
,
P. J.
, and
Al-chalabi
,
M. K. N.
,
1994
, “
Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems
,” Electric Power Research Center, North Carolina State University, Raleigh, NC.
8.
Turinsky
,
P.
, and
Sarsour
,
H.
,
2003
, “
NESTLE-C: Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems: CANDU Version
,” North Carolina State University, Raleigh, NC.
9.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2017
, “
Development of Uncertainty Quantification Capability for NESTLE
,”
ASME
Paper No. ICONE25-67797.10.1115/ICONE25-67797
10.
Huang
,
D.
,
Abdel-Khalik
,
H. S.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2018
, “
Further Development of Few-Group Cross-Section Uncertainty Quantification Techniques for Core Simulation
,”
Proceedings of PHYSOR
, Cancun, Mexico, Apr. 22–26, No. RN:50022014.
11.
Huang
,
D.
,
Abdel-Khalik
,
H. S.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2017
, “
Efficient Evaluation of Core Simulator Few-Group Cross-Section Uncertainties Via PCM
,”
ANS Winter Meeting
, Washington, DC, Oct. 29–Nov. 2.
12.
Huang
,
D.
,
Abdel-Khalik
,
H. S.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2018
, “
Further Development of Efficient Uncertainty Quantification Techniques for Core Simulation
,”
ANS Annual Meeting
, Philadelphia, PA, June 17–21, 2018.
13.
Abdel-Khalik
,
H. S.
,
Huang
,
D.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2018
, “
Towards Development of Uncertainty Library for Nuclear Reactor Core Simulation
,”
ASME
Paper No. ICONE26-82385.10.1115/ICONE26-82385
14.
George
,
N. M.
,
2015
, “
Assessment of Reactivity Equivalence for Enhanced Accident Tolerant Fuels in Light Water Reactors
,”
Ph.D. thesis
, University of Tennessee, Knoxville, TN.https://trace.tennessee.edu/utk_graddiss/3333/
15.
Jessee
,
M. A.
, and
Dehart
,
M. D.
,
2011
, “
Triton: A Multipurpose Transport, Depletion, and Sensitivity and Uncertainty Analysis Module Version 6
,” Oak Ridge National Laboratory, Oak Ridge, TN, Standard.
16.
Larsen
,
N. H.
,
1978
, “
Core Design and Operating Data for Cycles 1 and 2 of Peach Bottom 2
,” Nuclear Energy Engineering Division/General Electric Co, San Jose, CA, Report No. EPRI-NP-563.
17.
Pounders
,
J. M.
,
Rahnema
,
F.
,
Serghiuta
,
D.
, and
Tholammakkil
,
J.
,
2011
, “
A 3D Stylized Half-Core CANDU Benchmark Problem
,”
Ann. Nucl. Energy
,
38
(
4
), pp.
876
896
.10.1016/j.anucene.2010.10.018
You do not currently have access to this content.