Abstract

The current regulatory process allows for the use of models employing realistic assumptions as opposed to conservative bounding approaches, requiring a concerted use of best-estimate modeling and comprehensive estimation of uncertainties, collectively referred to as best-estimate-plus-uncertainty methods. This necessitates access to an integrated and automated procedure for the propagation and understanding of key sources of uncertainties. Focusing on neutronic reactor core simulation, this paper lays the theoretical foundations for an uncertainty characterization framework that is comprehensive, informative, and efficient, implying its ability to propagate all sources of uncertainties and identify key contributors in a computationally efficient manner. This paper represents the overarching objective of our work to propagate multigroup (MG) cross section uncertainties through lattice physics calculations and core-wide simulation. This requires the evaluation of few-group parameters uncertainties in terms of a wide range of local conditions, e.g., burnup, fuel temperature, etc., which results in a very high dimensional uncertainty space. The first strategy employed to compress the few-group uncertainties is the physics-guided coverage mapping (PCM) methodology developed to assess the similarity between the branch and base uncertainties in lattice calculation. To further compress the uncertainty propagated, this paper employs an accuracy-preserving reduced order modeling (ROM) technique relying on the use of range finding algorithms to construct all few-group parameters variations to a very small preset tolerance. In a separate cosubmitted paper, this framework is demonstrated to thermal reactors including both light and heavy water systems using a number of computer codes, including NESTLE-C, SERPENT, SCALE's NEWT, and SAMPLER codes.

References

1.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2017
, “
Development of Uncertainty Quantification Capability for NESTLE
,”
ASME
Paper No. ICONE25-67797.10.1115/ICONE25-67797
2.
Huang
,
D.
,
Abdel-Khalik
,
H. S.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2018
, “
Further Development of Few-Group Cross-Section Uncertainty Quantification Techniques for Core Simulation
,”
Proceedings of PHYSOR 2018
, Cancun, Mexico, Apr. 22–26, No. RN:50022014.
3.
Huang
,
D.
,
Abdel-Khalik
,
H. S.
,
Chvala
,
O.
, and
Maldonado
,
G. I.
,
2018
, “
Further Development of Efficient Uncertainty Quantification Techniques for Core Simulation
,”
ANS Annual Meeting
, Philadelphia, PA, June 17–21.
4.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2019
, “
Application of Cross Sections Uncertainty Propagation Framework to Light and Heavy Water Reactor Systems
,”
ASME J. Nuclear Rad. Sci.
(accepted).10.1115/1.4045032
5.
Turinsky
,
P.
, and
Sarsour
,
H.
,
2003
, “NESTLE-C: Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems: CANDU Version,”
North Carolina State University
,
Raleigh, NC
.
6.
Wiarda
,
D.
, and
Dunn
,
M. E.
,
2006
, “
PUFF-IV: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2006/147
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.1034&rep=rep1&type=pdf
7.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2016
, “
SCALE Code System Version 6.2
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2005/39
.https://www.ornl.gov/sites/default/files/SCALE%20Code%20System.pdf
8.
Briggs
,
L. L.
,
2009
, “
Uncertainty Quantification Approaches for Advanced Reactor Analyses
,” Argonne National Laboratory, Argonne, IL, Report No.
ANL-GENIV-110
.https://digital.library.unt.edu/ark:/67531/metadc934976/
9.
Helton
,
J. C.
,
Davis
,
F. J.
, and
Johnson
,
J. D.
,
2005
, “
A Comparison of Uncertainty and Sensitivity Analysis Results Obtained With Random and Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
89
(
3
), pp.
305
330
.10.1016/j.ress.2004.09.006
10.
Glaeser
,
H.
,
2008
, “
GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications
,”
Sci. Technol. Nucl. Install.
,
2008
, p.
1
.10.1155/2008/798901
11.
Cacuci
,
D. G.
, and
Ionescu-Bujor
,
M.
,
2004
, “
A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods
,”
Nucl. Sci. Eng.
,
147
(
3
), pp.
204
217
.10.13182/04-54CR
12.
Ionescu-Bujor
,
M.
, and
Cacuci
,
D. G.
,
2004
, “
A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods
,”
Nucl. Sci. Eng.
,
147
(
3
), pp.
189
203
.10.13182/NSE03-105CR
13.
Williams
,
M. L.
,
1986
, “
Perturbation Theory for Nuclear Reactor Analysis
,”
CRC Handbook Nuclear Reactors Calculations
, Vol.
3
, Boca Raton, FL, pp.
63
188
.
14.
Klein
,
M.
,
Gallner
,
L.
,
Krzykacz-Hausmann
,
B.
,
Pautz
,
A.
, and
Zwermann
,
W.
,
2011
, “
Influence of Nuclear Data Uncertainties on Reactor Core Calculations
,”
Kerntechnik
,
76
(
3
), pp.
174
178
.10.3139/124.110148
15.
Bratton
,
R. N.
,
Avramova
,
M.
, and
Ivanov
,
K.
,
2014
, “
OECD/NEA Benchmark for Uncertainty Analysis in Modeling (UAM) for LWRs–Summary and Discussion of Neutronics Cases (Phase I)
,”
Nucl. Eng. Technol.
,
46
(
3
), pp.
313
342
.10.5516/NET.01.2014.710
16.
Turinsky
,
P.
, and
Khuwaileh
,
B.
,
2016
, “
Methods Development and Application of Uncertainty Quantification & Data Assimilation for Multi-Physics Simulations
,” Consortium for Advanced Simulation of LWRs, Raleigh, NC, Report No.
CASL-U-2016-1087-000
.https://www.casl.gov/sites/default/files/docs/Turinsky%20-%20Methods%20Development%20Application%20of%20UQ%20-%20April%202016.pdf
17.
Zhou
,
H.
,
Jessee
,
M. A.
,
Ward
,
A.
, and
Downar
,
T.
,
2016
, “Uncertainty Quantification for Full-Core Steady-State PWR Core Simulation With SCALE and PARCS,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
18.
Yankov
,
A.
,
Collins
,
B.
,
Klein
,
M.
,
Jessee
,
M. A.
,
Zwermann
,
W.
,
Velkov
,
K.
,
Pautz
,
A.
, and
Downar
,
T.
,
2012
, “
A Two-Step Approach to Uncertainty Quantification of Core Simulators
,”
Sci. Technol. Nucl. Install.
,
2012
, p.
1
.10.1155/2012/767096
19.
Bang
,
Y.
,
Abdel‐Khalik
,
H. S.
, and
Hite
,
J. M.
,
2012
, “
Hybrid Reduced Order Modeling Applied to Nonlinear Models
,”
Int. J. Numer. Methods Eng.
,
91
(
9
), pp.
929
949
.10.1002/nme.4298
20.
Huang
,
D.
, and
Abdel-Khalik
,
H. S.
,
2016
, “
Construction of Optimized Experimental Responses in Support of Model Validation Via Physics Coverage Mapping Methodology
,”
Proceedings of PHYSOR,
Vol.
2016
, pp.
1
5
.
21.
Trumpler
,
R. J.
, and
Weaver
,
H. F.
,
1953
,
Statistical Astronomy
,
University of California Press
, Berkeley, CA.
22.
Wang
,
C.
, and
Abdel-Khalik
,
H. S.
,
2013
, “
Exact-to-Precision Generalized Perturbation Theory for Eigenvalue Problems
,”
Nucl. Eng. Des.
,
256
, pp.
130
140
.10.1016/j.nucengdes.2012.11.006
23.
Halko
,
N.
,
Martinsson
,
P. G.
, and
Tropp
,
J. A.
,
2011
, “
Finding Structure With Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions
,”
SIAM Rev.
,
53
(
2
), pp.
217
288
.10.1137/090771806
You do not currently have access to this content.