The management of long-lived radionuclides in spent fuel is a key issue to achieve the closed nuclear fuel cycle and the sustainable development of nuclear energy. The partitioning-transmutation method is supposed to efficiently treat the long-lived radionuclides. Accordingly, the transmutation of long-lived minor actinides (MAs) is significant for the postprocessing of spent fuel. In the present work, the transmutations in pressurized water reactor (PWR) mixed oxide (MOX) fuel are investigated through the Monte Carlo neutron transport method. Two types of MAs are homogeneously incorporated into MOX fuel assembly with different mixing ratios. In addition, two types of design of semihomogeneous loading of 237Np in MOX fuels are studied. The results indicate an overall nice efficiency of transmutation in PWR with MOX fuel, especially for 237Np and 241Am, which are primarily generated in the current uranium oxide fuel. In addition, the transmutation efficiency of 237Np is excellent, while its inclusion has no much influence on other MAs. The flattening of power and burnup are achieved by semihomogeneous loading of MAs. The uncertainties of Monte Carlo method are negligible, while those due to nuclear data change little the conclusions of the transmutation of MAs. The transmutation of MAs in MOX fuel is expected to be an efficient method for spent fuel management.

References

1.
Von Hippel
,
F. N.
,
2001
, “
Plutonium and Reprocessing of Spent Nuclear Fuel
,”
Science
,
293
(
5539
), pp.
2397
2398
.
2.
IAEA
,
2009
, “
Status of Minor Actinide Fuel Development
,” International Atomic Energy Agency, Vienna, Austria, IAEA Nuclear Energy Series No.
NF-T-4.6
.https://www-pub.iaea.org/books/iaeabooks/8224/Status-of-Minor-Actinide-Fuel-Development
3.
Liu
,
B.
,
Wang
,
K.
,
Tu
,
J.
,
Liu
,
F.
,
Huang
,
L.
, and
Hu
,
W.
,
2014
, “
Transmutation of Minor Actinides in the Pressurized Water Reactors
,”
Ann. Nucl. Energy
,
64
, pp.
86
92
.
4.
Hu
,
W.
,
Liu
,
B.
,
Ouyang
,
X.
,
Tu
,
J.
,
Liu
,
F.
,
Huang
,
L.
,
Fu
,
J.
, and
Meng
,
H.
,
2015
, “
Minor Actinide Transmutation on PWR Burnable Poison Rods
,”
Ann. Nucl. Energy
,
77
, pp.
74
82
.
5.
Nishihara
,
K.
,
Oigawa
,
H.
,
Nakayama
,
S.
,
Ono
,
K.
, and
Shiotani
,
H.
,
2010
, “
Impact of Partitioning and Transmutation on High-Level Waste Disposal for the Fast Breeder Reactor Fuel Cycle
,”
J. Nucl. Sci. Technol.
,
47
(
12
), pp.
1101
1117
.
6.
Meiliza
,
Y.
,
Saito
,
M.
, and
Sagara
,
H.
,
2008
, “
Protected Plutonium Breeding by Transmutation of Minor Actinides in Fast Breeder Reactor
,”
J. Nucl. Sci. Technol.
,
45
(
3
), pp.
230
237
.
7.
Wakabayashi
,
T.
,
2002
, “
Transmutation Characteristics of MA and LLFP in a Fast Reactor
,”
Prog. Nucl. Energy
,
40
(
3–4
), pp.
457
463
.
8.
Hu
,
Y.
,
Wan
,
K.
, and
Xu
,
M.
,
2010
, “
Transmutation of MA Nuclides in Sodium Cooled MOX Fuel Fast Reactor
,”
Nucl. Power Eng.
,
1
, p.
6
.
9.
Beller
,
D. E.
,
Van Tuyle
,
G. J.
, and
Bennett
,
D.
,
2001
, “
The U.S. Accelerator Transmutation of Waste Program
,”
Nucl. Instrum. Methods Phys. Res. A
,
463
(
3
), pp.
468
486
.
10.
Herrera-Martnez
,
A.
,
Kadi
,
Y.
, and
Parks
,
G.
,
2007
, “
Transmutation of Nuclear Waste in Accelerator-Driven Systems: Thermal Spectrum
,”
Ann. Nucl. Energy
,
34
, pp.
550
563
.
11.
Liang
,
T.
, and
Tang
,
C.
,
2003
, “
Transmutation of Long-Lived Nuclides
,”
Nucl. Tech.
,
26
(
12
), pp.
935
939
.
12.
Chen
,
S.
, and
Yuan
,
C.
,
2017
, “
Transmutation of Minor Actinides and Power Flattening in PWR MOX Fuel
,”
Reactor Physics Asia 2017
(
RPHA17
) Conference, Chengdu, Sichuan, China, Aug. 24–25.https://arxiv.org/ftp/arxiv/papers/1802/1802.01659.pdf
13.
Popov
,
S. G.
,
Carbajo
,
J. J.
,
lvanov
,
V. K.
, and
Yoder
,
G. L.
,
2000
, “
Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation
,” Oak Ridge National Laboratory, Oak Ridge, TN, No.
ORNL/TM-2000/351
.https://rsicc.ornl.gov/fmdp/tm2000-351.pdf
14.
Chen
,
S.
, and
Yuan
,
C.
,
2017
, “
Neutronic Analysis on Potential Accident Tolerant Fuel-Cladding Combination U3Si2-FeCrAl
,”
Sci. Technol. Nucl. Install.
,
2017
, p.
3146985
.
15.
Chadwick
,
M. B.
,
Oblozinsky
,
P.
,
Herman
,
M.
,
Greene
,
N. M.
,
McKnight
,
R. D.
,
Smith
,
D. L.
,
Young
,
P. G.
,
MacFarlane
,
R. E.
,
Hale
,
G. M.
,
Frankle
,
S. C.
, and
Kahler
,
A. C.
,
2006
, “
ENDF/B-VII. 0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nucl. Data Sheets
,
107
(
12
), pp.
2931
3060
.
16.
Wang
,
K.
,
Li
,
Z.
,
She
,
D.
,
Xu
,
Q.
,
Qiu
,
Y.
,
Yu
,
J.
,
Sun
,
J.
,
Fan
,
X.
, and
Yu
,
G.
,
2015
, “
RMC-CA Monte Carlo Code for Reactor Core Analysis
,”
Ann. Nucl. Energy
,
82
, pp.
121
129
.
17.
Li
,
Z.
,
Wang
,
K.
, and
Zhang
,
X.
,
2011
, “
Research on Applying Neutron Transport Monte Carlo Method in Materials With Continuously Varying Cross Sections
,”
M&C 2011
, Rio de Janeiro, RJ, Brazil, May 8–12, pp. 1–15.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/48/022/48022323.pdf?r=1
18.
Liu
,
S.
,
Yuan
,
Y.
,
Yu
,
J.
, and
Wang
,
K.
,
2016
, “
Development of on-the-Fly Temperature-Dependent Cross Sections Treatment in RMC Code
,”
Ann. Nucl. Energy
,
94
, pp.
144
149
.
19.
Yu
,
J.
,
Li
,
S.
,
Wang
,
K.
,
Wang
,
G.
, and
Yu
,
G.
,
2013
, “
The Development and Validation of Nuclear Cross Section Processing Code for Reactor-RXSP
,”
ASME
Paper No. Paper No. ICONE21-15442.
20.
Qiu
,
Y.
,
Aufiero
,
M.
,
Wang
,
K.
, and
Fratoni
,
M.
,
2016
, “
Development of Sensitivity Analysis Capabilities of Generalized Responses to Nuclear Data in Monte Carlo Code RMC
,”
Ann. Nucl. Energy
,
97
, pp.
142
152
.
21.
Qiu
,
Y.
,
Shang
,
X.
,
Tang
,
X.
,
Liang
,
J.
, and
Wang
,
K.
,
2016
, “
Computing Eigenvalue Sensitivity Coefficients to Nuclear Data by Adjoint Superhistory Method and Adjoint Wielandt Method Implemented in RMC Code
,”
Ann. Nucl. Energy
,
87
, pp.
228
241
.
22.
She
,
D.
,
Liu
,
Y.
,
Wang
,
K.
,
Yu
,
G.
,
Forget
,
B.
,
Romano
,
P. K.
, and
Smith
,
K.
,
2013
, “
Development of Burnup Methods and Capabilities in Monte Carlo Code RMC
,”
Ann. Nucl. Energy
,
51
, pp.
289
294
.
23.
She
,
D.
,
Wang
,
K.
, and
Yu
,
G.
,
2013
, “
Development of the Point-Depletion Code DEPTH
,”
Nucl. Eng. Des.
,
258
, pp.
235
240
.
24.
Parks
,
C. V.
,
1992
, “
Overview of ORIGEN2 and ORIGEN-S: Capabilities and Limitations
,”
Third International Conference on High Level Radioactive Waste Management
, Las Vegas, NV, Apr. 12–16, pp.
57
63
.https://inis.iaea.org/search/search.aspx?orig_q=RN:23037442
25.
Yuan
,
C.
,
Suzuki
,
T.
,
Otsuka
,
T.
,
Xu
,
F.
, and
Tsunoda
,
N.
,
2012
, “
Study of B, C, N, and O Isotopes Based on VMU
,”
Phys. Rev. C
,
85
(
6
), p.
064324
.
26.
Yuan
,
C.
,
Qi
,
C.
,
Xu
,
F.
,
Suzuki
,
T.
, and
Otsuka
,
T.
,
2014
, “
Mirror Energy Difference and the Structure of Loosely Bound Proton-Rich Nuclei Around A=20
,”
Phys. Rev. C
,
89
(
4
), p.
044327
.
27.
Yuan
,
C.
,
Liu
,
Z.
,
Xu
,
F.
,
Walker
,
P. M.
,
Podolyak
,
Z.
,
Xu
,
C.
,
Ren
,
Z. Z.
,
Ding
,
B.
,
Liu
,
X. Y.
, and
Xu
,
H. S.
,
2016
, “
Isomerism in the South-East of 132Sn and a Predicted Neutron-Decaying Isomer in 129Pd
,”
Phys. Lett. B
,
762
, pp.
237
242
.
28.
Otsuka
,
T.
,
Honma
,
M.
,
Mizusaki
,
T.
,
Shimizu
,
N.
, and
Utsuno
,
Y.
,
2001
, “
Monte Carlo Shell Model for Atomic Nuclei
,”
Prog. Part. Nucl. Phys.
,
47
(
1
), pp.
319
400
.
29.
Broeders
,
C. H. M.
,
Kiefhaber
,
E.
, and
Wiese
,
H. W.
,
2000
, “
Burning Transuranium Isotopes in Thermal and Fast Reactors
,”
Nucl. Eng. Des.
,
202
(
2–3
), pp.
157
172
.
30.
Iwasaki
,
T.
,
2002
, “
A Study of Transmutation of Minor-Actinide in a Thermal Neutron Field of the Advanced Neutron Source
,”
Prog. Nucl. Energy
,
40
(
3–4
), pp.
481
488
.
31.
NEA
,
2017
, “
JEFF-3.3 Nuclear Data Library
,” OECD Nuclear Energy Agency, Paris, France, accessed Nov. 20, 2017, https://www.oecd-nea.org/dbdata/JEFF33
32.
Yuan
,
C.
,
Wang
,
X.
, and
Chen
,
S.
,
2016
, “
A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate
,”
Sci. Technol. Nucl. Install.
,
2016
, p.
6980547
.
33.
Chen
,
S.
,
Yuan
,
C.
, and
Guo
,
D.
,
2018
, “
Radial Distributions of Power and Isotopic Concentration in Candidate ATF U3Si2 and UO2/U3Si2 Fuel With FeCrAl Cladding
,” preprint
arXiv:1802.03574
.https://arxiv.org/abs/1802.03574
34.
Yuan
,
C.
,
2016
, “
Uncertainty Decomposition Method and Its Application to the Liquid Drop Model
,”
Phys. Rev. C
,
93
(
3
), p.
034310
.
35.
Yuan
,
C.
,
2017
, “
Impact of Off-Diagonal Cross-Shell Interaction on 14C
,”
Chin. Phys. C
,
41
(
10
), p.
104102
.
36.
Chen
,
S.
,
2017
, “
Interpretation of the PROFIL(2) Experiments for the Calculation of the Capture Cross Sections and Corresponding Covariance Matrices of the Main Fission Products
,” M.S. thesis, Sun Yat-sen University, Guangdong, China.
You do not currently have access to this content.