Uranium dioxide (UO2) is the typical fuel that is used in the current nuclear power plant; fission gas atoms are produced during and after the nuclear reactor operation; the fission gas atoms have a significant effect on the performance of UO2 fuel in the nuclear reactor. In this paper, we investigated the diffusion of the fission gas atoms in the UO2 fuel by using the first-principles calculation method based on the density functional theory (DFT). The results indicate that the volume of the UO2 cell increased when there is a fission gas atom enters in the UO2 supercell; the elastic properties of UO2 are in good agreement with other simulation results and experimental data and the fission gas atoms make the ductility of UO2 decreased; the fission gas atoms prefer to occupy the octahedral interstitial site (OIS) over the uranium vacancy site and the oxygen vacancy site, and the oxygen vacancy site is the most difficult occupied site due to the formation of an oxygen vacancy is more difficult than that of the uranium vacancy; the diffusion barrier of a He atom in the UO2 supercell is higher than that of an oxygen atom, that means that the diffusion of the He atom in UO2 fuel is weaker than that of the oxygen atom. Our works may shed some light on the formation mechanism of the bubbles caused by the fission gas atoms in the UO2 fuel.

References

1.
Watanabe
,
T.
,
Sinnott
,
S. B.
,
Tulenko
,
J. S.
,
Grimes
,
R. W.
,
Schelling
,
P. K.
, and
Phillpot
,
S. R.
,
2008
, “
Thermal Transport Properties of Uranium Dioxide by Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
375
(
3
), pp.
388
396
.
2.
Yun
,
Y.
,
Legut
,
D.
, and
Oppeneer
,
P. M.
,
2011
, “
Phonon Spectrum, Thermal Expansion and Heat Capacity of UO2 From First-Principles
,”
J. Nucl. Mater.
,
426
(
1–3
), pp.
109
114
.
3.
Wang
,
B. T.
,
Zhang
,
P.
,
Lizárraga
,
R.
,
Marco
,
I. D.
, and
Eriksson
,
O.
,
2012
, “
Phonon Spectrum, Thermodynamic Properties, and Pressure-Temperature Phase Diagram of Uranium Dioxide
,”
Phys. Rev. B
,
88
(
10
), pp.
3169
3182
.
4.
Wang
,
B. T.
,
Zheng
,
J. J.
,
Qu
,
X.
,
Li
,
W. D.
, and
Zhang
,
P.
,
2015
, “
Thermal Conductivity of UO2 and PuO2 From First-Principles
,”
J. Alloys Compd.
,
628
, pp.
267
271
.
5.
Sanati
,
M.
,
Albers
,
R. C.
,
Lookman
,
T.
, and
Saxena
,
A.
,
2011
, “
Elastic Constants, Phonon Density of States, and Thermal Properties of UO2
,”
Phys. Rev. B
,
84
(
1
), pp.
1651
1659
.
6.
Devey
,
A. J.
,
2011
, “
First Principles Calculation of the Elastic Constants and Phonon Modes of UO2 Using GGA + U With Orbital Occupancy Control
,”
J. Nucl. Mater.
,
412
(
3
), pp.
301
307
.
7.
Yun
,
Y.
,
Eriksson
,
O.
,
Oppeneer
,
P. M.
,
Kim
,
H.
, and
Park
,
K.
,
2009
, “
First-Principles Theory for Helium and Xenon Diffusion in Uranium Dioxide
,”
J. Nucl. Mater.
,
385
(
2
), pp.
364
367
.
8.
Yakub
,
E.
,
2011
, “
Helium Solubility in Uranium Dioxide From Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
414
(
2
), pp.
83
87
.
9.
Gupta
,
F.
,
Pasturel
,
A.
, and
Brillant
,
G.
,
2010
, “
Diffusion of Oxygen in Uranium Dioxide: A First-Principles Investigation
,”
Phys. Rev. B
,
81
(
1
), pp.
1718
1720
.
10.
Crocombette
,
J. P.
,
2012
, “
First-Principles Study With Charge Effects of the Incorporation of Iodine in UO2
,”
J. Nucl. Mater.
,
429
(
1–3
), pp.
70
77
.
11.
Iwasawa, M., Chen, Y.,
Kaneta
,
Y.
,
Ohnuma
,
T.
,
Geng
,
H. Y.
, and
Kinoshita
,
M.
,
2006
, “
First-Principles Calculation of Point Defects in Uranium Dioxide
,”
Mater. Trans.
,
47
(
11
), pp.
2651
2657
.
12.
Yu
,
J.
,
Devanathan
,
R.
, and
Weber
,
W. J.
,
2009
, “
First-Principles Study of Defects and Phase Transition in UO2
,”
J. Phys.: Condens. Matter
,
21
(
43
), p.
435401
.
13.
Hohenberg
,
P.
, and
Kohn
,
W.
,
1964
, “
Inhomogeneous Electron Gas
,”
Phys. Rev.
,
136
(
3B
), p.
B864
.
14.
Kohn
,
W.
, and
Sham
,
L. J.
,
1965
, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
,
140
(
4A
), p.
A1133
.
15.
Clark
,
S. J.
,
Segall
,
M. D.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Probert
,
M. I.
,
Refson
,
K.
, and
Payne
,
M. C.
,
2005
, “
First Principles Methods Using CASTEP
,”
Z. Kristallogr.: Cryst. Mater.
,
220
(5/6), pp.
567
570
.
16.
Becke
,
A. D.
,
1993
, “
A New Mixing of Hartree-Fock and Local Density-Functional Theories
,”
J. Chem. Phys.
,
98
(
2
), pp.
1372
1377
.
17.
Perdew
,
J. P.
, and
Yue
,
W.
,
1986
, “
Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation
,”
Phys. Rev. B
,
33
(
12
), p.
8800
.
18.
Perdew
,
J. P.
,
Chevary
,
J.
,
Vosko
,
S.
,
Jackson
,
K. A.
,
Pederson
,
M. R.
,
Singh
,
D.
, and
Fiolhais
,
C.
,
1992
, “
Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation
,”
Phys. Rev. B
,
46
(
11
), p.
6671
.
19.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), p.
3865
.
20.
Iikura
,
H.
,
Tsuneda
,
T.
,
Yanai
,
T.
, and
Hirao
,
K.
,
2001
, “
A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals
,”
J. Chem. Phys.
,
115
(
8
), pp.
3540
3544
.
21.
Dorado
,
B.
,
Jomard
,
G.
,
Freyss
,
M.
, and
Bertolus
,
M.
,
2010
, “
Stability of Oxygen Point Defects in UO2 by First-Principles DFT+U Calculations: Occupation Matrix Control and Jahn-Teller Distortion
,”
Phys. Rev. B
,
82
(
3
), p.
035114
.
22.
Padel
,
A.
, and
Novion
,
C. D.
,
1969
, “
Constantes Elastiques Des Carbures, Nitrures Et Oxydes D'uranium Et De Plutonium
,”
J. Nucl. Mater.
,
33
(
1
), pp.
40
51
.
23.
Fan
,
H.
,
Wang
,
S. S.
, and
Li
,
Y. H.
,
2014
, “
Study on the Electronic Structure and Elastic Constants of Uranium Dioxide by First Principles
,”
Acta Phys. Sin.
,
64
(
9
), p.
097101
.http://wulixb.iphy.ac.cn/CN/10.7498/aps.64.097101
24.
Schoenes
,
J.
,
1979
, “
Optical Properties and Electronic Structure of UO2
,”
Solid State Commun.
,
32
(
10
), pp.
873
877
.
25.
Fritz
,
I. J.
,
1976
, “
Elastic Properties of UO2 at High Pressure
,”
J. Appl. Phys.
,
47
(
10
), pp.
4353
4358
.
26.
Thompson
,
A. E.
, and
Wolverton
,
C.
,
2011
, “
First-Principles Study of Noble Gas Impurities and Defects in UO2
,”
Phys. Rev. B
,
84
(
13
), p.
134111
.
27.
Dorado
,
B.
,
Garcia
,
P.
,
Carlot
,
G.
,
Davoisne
,
C.
,
Fraczkiewicz
,
M.
,
Pasquet
,
B.
,
Freyss
,
M.
,
Valot
,
C.
,
Baldinozzi
,
G.
, and
Siméone
,
D.
,
2011
, “
First-Principles Calculation and Experimental Study of Oxygen Diffusion in Uranium Dioxide
,”
Phys. Rev. B
,
83
(
3
), p.
035126
.
28.
Dorado
,
B.
,
Andersson
,
D. A.
,
Stanek
,
C. R.
,
Bertolus
,
M.
,
Uberuaga
,
B. P.
,
Martin
,
G.
,
Freyss
,
M.
, and
Garcia
,
P.
,
2012
, “
First-Principles Calculations of Uranium Diffusion in Uranium Dioxide
,”
Phys. Rev. B
,
86
(
3
), p.
035110
.
29.
Roudil
,
D.
,
Deschanels
,
X.
,
Trocellier
,
P.
,
Jégou
,
C.
,
Peuget
,
S.
, and
Bart
,
J. M.
,
2004
, “
Helium Thermal Diffusion in a Uranium Dioxide Matrix
,”
J. Nucl. Mater.
,
327
(
2–3
), pp.
226
226
.
You do not currently have access to this content.