Molecular dynamics (MD) simulation aiming to investigate heat transfer between argon fluid flow and two parallel copper plates in the nanoscale is carried out by simultaneously control momentum and temperature of the simulation box. The top copper wall is kept at a constant velocity by adding an external force according to the velocity difference between on-the-fly and desired velocities. At the same time the top wall holds a higher temperature while the bottom wall is considered as physically stationary and has a lower temperature. A sample region is used in order to measure the heat flux flowing across the simulation box, and thus the heat transfer coefficient between the fluid and wall can be estimated through its definition. It is found that the heat transfer coefficient between argon fluid flow and copper plate in this scenario is lower but still in the same order magnitude in comparison with the one predicted based on the hypothesis in other reported work.

References

1.
Soong
,
C.
,
Yen
,
T.
, and
Tzeng
,
P.
,
2007
, “
Molecular Dynamics Simulation of Nanochannel Flows With Effects of Wall Lattice–Fluid Interactions
,”
Phys. Rev. E
,
76
(
3
), p.
036303
.10.1103/PhysRevE.76.036303
2.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
3.
Chauhan
,
S.
, and
Kumar
,
V.
,
2011
, “
Heat Transfer Effects in a Couette Flow Through a Composite Channel Partly Filled by a Porous Medium With a Transverse Sinusoidal Injection Velocity and Heat Source
,”
Therm. Sci.
,
15
(
Suppl. 2
), pp.
175
186
.10.2298/TSCI100716055C
4.
Das
,
S.
,
Mohanty
,
M.
,
Panda
,
J.
, and
Sahoo
,
S.
,
2008
, “
Hydromagnetic Three Dimensional Couette Flow and Heat Transfer
,”
J. Nav. Archit. Mar. Eng.
,
5
(
1
), pp.
1
10
.10.3329/jname.v5i1.1784
5.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J. R.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
, Columbia, MO.
6.
Govindarajan
,
A.
,
Ramamurthy
,
V.
, and
Sundarammal
,
K.
,
2007
, “
3D Couette Flow of Dusty Fluid With Transpiration Cooling
,”
J. Zhejiang Univ., Sci., A
,
8
(
2
), pp.
313
322
.10.1631/jzus.2007.A0313
7.
Jana
,
R. N.
,
Datta
,
N.
, and
Mazumder
,
B. S.
,
1977
, “
Magnetohydrodynamic Couette Flow and Heat Transfer in a Rotating System
,”
J. Phys. Soc. Jpn.
,
42
(
3
), pp.
1034
1039
.10.1143/JPSJ.42.1034
8.
Kuznetsov
,
A.
,
2000
, “
Fluid Flow and Heat Transfer Analysis of Couette Flow in a Composite Duct
,”
Acta Mech.
,
140
(
3–4
), pp.
163
170
.10.1007/BF01182508
9.
Soundalgekar
,
V.
,
Vighnesam
,
N.
, and
Takhar
,
H.
,
1979
, “
Hall and Ion-Slip Effects in MHD Couette Flow With Heat Transfer
,”
IEEE Trans. Plasma Sci.
,
7
(
3
), pp.
178
182
.10.1109/TPS.1979.4317226
10.
Jabbarzadeh
,
A.
,
Atkinson
,
J.
, and
Tanner
,
R.
,
2000
, “
Effect of the Wall Roughness on Slip and Rheological Properties of Hexadecane in Molecular Dynamics Simulation of Couette Shear Flow Between Two Sinusoidal Walls
,”
Phys. Rev. E
,
61
(
1
), pp.
690
699
.10.1103/PhysRevE.61.690
11.
Jabbarzadeh
,
A.
,
Atkinson
,
J.
, and
Tanner
,
R.
,
1999
, “
Wall Slip in the Molecular Dynamics Simulation of Thin Films of Hexadecane
,”
J. Chem. Phys.
,
110
(
5
), pp.
2612
2620
.10.1063/1.477982
12.
Khare
,
R.
,
Keblinski
,
P.
, and
Yethiraj
,
A.
,
2006
, “
Molecular Dynamics Simulations of Heat and Momentum Transfer at a Solid–Fluid Interface: Relationship Between Thermal and Velocity Slip
,”
Int. J. Heat Mass Transfer
,
49
(
19
), pp.
3401
3407
.10.1016/j.ijheatmasstransfer.2006.03.005
13.
Nagayama
,
G.
, and
Cheng
,
P.
,
2004
, “
Effects of Interface Wettability on Microscale Flow by Molecular Dynamics Simulation
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
501
513
.10.1016/j.ijheatmasstransfer.2003.07.013
14.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
, “
Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2087
2100
.10.1016/S0017-9310(01)00310-6
15.
Finnis
,
M.
, and
Sinclair
,
J.
,
1984
, “
A Simple Empirical N-Body Potential for Transition Metals
,”
Philos. Mag. A
,
50
(
1
), pp.
45
55
.10.1080/01418618408244210
16.
Wang
,
Y.
, and
He
,
G.
,
2007
, “
A Dynamic Coupling Model for Hybrid Atomistic–Continuum Computations
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3574
3579
.10.1016/j.ces.2006.12.093
17.
Schneider
,
T.
, and
Stoll
,
E.
,
1978
, “
Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions
,”
Phys. Rev. B
,
17
(
3
).10.1103/PhysRevB.17.1302
18.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
19.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graph.
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
20.
Tuckerman
,
D. B.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
21.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
,
Cambridge University
, Cambridge, UK.
22.
Macdonald
,
F.
, and
Lide
,
D. R.
, 2003, “CRC Handbook of Chemistry and Physics: From Paper to Web,” CRC Press, London, UK.
23.
Liu
,
C. W.
,
Ko
,
H. S.
, and
Gau
,
C.
,
2011
,
Heat Transfer—Theoretical Analysis, Experimental Investigations and Industrial Systems, In Tech, Taiwan.
24.
Liu
,
Q.-X.
,
Jiang
,
P.-X.
, and
Xiang
,
H.
,
2010
, “
Molecular Dynamics Simulation of Thermal Conductivity of an Argon Liquid Layer Confined in Nanospace
,”
Mol. Simul.
,
36
(
13
), pp.
1080
1085
.10.1080/08927022.2010.504773
You do not currently have access to this content.