The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.
Issue Section:
Research Papers
References
1.
Bischof
, J.
, Christov
, K.
, and Rubinsky
, B.
, 1993
, “A Morphological-Study of Cooling Rate Response in Normal and Neoplastic Human Liver-Tissue-Cryosurgical Implications
,” Cryobiology
, 30
(5
), pp. 482
–492
.10.1006/cryo.1993.10492.
Popken
, F.
, Seifert
, J. K.
, Engelmann
, R.
, Dutkowski
, P.
, Nassir
, F.
, and Junginger
, T.
, 2000
, “Comparison of Iceball Diameter and Temperature Distribution Achieved With 3-Mm Accuprobe Cryoprobes in Porcine and Human Liver Tissue and Human Colorectal Liver Metastases in Vitro
,” Cryobiology
, 40
(4
), pp. 302
–310
.10.1006/cryo.2000.22503.
Coleman
, R. B.
, and Richardson
, R. N.
, 2005
, “A Novel Closed Cycle Cryosurgical System
,” Int. J. Refrig.
, 28
(3
), pp. 412
–418
.10.1016/j.ijrefrig.2004.07.0214.
Forest
, V.
, Peoc'h
, M.
, Campos
, L.
, Guyotat
, D.
, and Vergnon
, J.-M.
, 2006
, “Benefit of a Combined Treatment of Cryotherapy and Chemotherapy on Tumour Growth and Late Cryo-Induced Angiogenesis in a Non-Small-Cell Lung Cancer Model
,” Lung Cancer
, 54
(1
), pp. 79
–86
.10.1016/j.lungcan.2006.05.0265.
Fredrickson
, K.
, Nellis
, G.
, and Klein
, S.
, 2006
, “A Design Method for Mixed Gas Joule–Thomson Refrigeration Cryosurgical Probes
,” Int. J. Refrig.
, 29
(5
), pp. 700
–715
.10.1016/j.ijrefrig.2005.12.0036.
Hewitt
, P. M.
, Zhao
, J.
, Akhter
, J.
, and Morris
, D. L.
, 1997
, “A Comparative Laboratory Study of Liquid Nitrogen and Argon Gas Cryosurgery Systems
,” Cryobiology
, 35
(4
), pp. 303
–308
.10.1006/cryo.1997.20397.
Seifert
, J. K.
, Gerharz
, C. D.
, Mattes
, F.
, Nassir
, F.
, Fachinger
, K.
, Beil
, C.
, and Junginger
, T.
, 2003
, “A Pig Model of Hepatic Cryotherapy. In Vivo Temperature Distribution During Freezing and Histopathological Changes
,” Cryobiology
, 47
(3
), pp. 214
–226
.10.1016/j.cryobiol.2003.10.0078.
Rewcastle
, J. C.
, Sandison
, G. A.
, Saliken
, J. C.
, Donnelly
, B. J.
, and McKinnon
, J. G.
, 1999
, “Considerations During Clinical Operation of Two Commercially Available Cryomachines
,” J. Surg. Oncol.
, 71
(2
), pp. 106
–111
.10.1002/(SICI)1096-9098(199906)71:2<106::AID-JSO9>3.0.CO;2-Z9.
Popken
, F.
, Land
, M.
, Bosse
, M.
, Erberich
, H.
, Meschede
, P.
, Konig
, D. P.
, Fischer
, J. H.
, and Eysel
, P.
, 2003
, “Cryosurgery in Long Bones With New Miniature Cryoprobe: An Experimental in Vivo Study of the Cryosurgical Temperature Field in Sheep
,” Eur. J. Surg. Oncol.
, 29
(6
), pp. 542
–547
.10.1016/S0748-7983(03)00069-610.
Tacke
, J.
, Adam
, G.
, Haage
, P.
, Sellhaus
, B.
, Großkortenhaus
, S.
, and Günther
, R. W.
, 2001
, “MR-Guided Percutaneous Cryotherapy of the Liver: In Vivo Evaluation With Histologic Correlation in an Animal Model
,” J. Magn. Reson. Imaging
, 13
(1
), pp. 50
–56
.10.1002/1522-2586(200101)13:1<50::AID-JMRI1008>3.0.CO;2-A11.
Doll
, N.
, Meyer
, R.
, Walther
, T.
, and Mohr
, F. W.
, 2004
, “A New Cryoprobe for Intraoperative Ablation of Atrial Fibrillation
,” Ann. Thorac. Surg.
, 77
(4
), pp. 1460
–1462
.10.1016/S0003-4975(03)01389-412.
Takeda
, H.
, Maruyama
, S.
, Okajima
, J.
, Aiba
, S.
, and Komiya
, A.
, 2009
, “Development and Estimation of a Novel Cryoprobe Utilizing the Peltier Effect for Precise and Safe Cryosurgery
,” Cryobiology
, 59
(3
), pp. 275
–284
.10.1016/j.cryobiol.2009.08.00413.
Aihara
, T.
, Kim
, J.-K.
, Suzuki
, K.
, and Kasahara
, K.
, 1993
, “Boiling Heat Transfer of a Micro-Impinging Jet of Liquid Nitrogen in a Very Slender Cryoprobe
,” Int. J. Heat Mass Transfer
, 36
(1
), pp. 169
–175
.10.1016/0017-9310(93)80076-714.
Maruyama
, S.
, Nakagawa
, K.
, Takeda
, H.
, Aiba
, S.
, and Komiya
, A.
, 2008
, “The Flexible Cryoprobe Using Peltier Effect for Heat Transfer Control
,” J. Biomech. Sci. Eng.
, 3
(2
), pp. 138
–150
.10.1299/jbse.3.13815.
Bénita
, M.
, and Condé
, H.
, 1972
, “Effects of Local Cooling Upon Conduction and Synaptic Transmission
,” Brain Res.
, 36
(1
), pp. 133
–151
.10.1016/0006-8993(72)90771-816.
Zhang
, J.-X.
, Ni
, H.
, and Harper
, R. M.
, 1986
, “A Miniaturized Cryoprobe for Functional Neuronal Blockade in Freely Moving Animals
,” J. Neurosci. Methods
, 16
(1
), pp. 79
–87
.10.1016/0165-0270(86)90010-517.
Okajima
, J.
, Komiya
, A.
, and Maruyama
, S.
, 2010
, “Boiling Heat Transfer in Small Channel for Development of Ultrafine Cryoprobe
,” Int. J. Heat Fluid Flow
, 31
(6
), pp. 1012
–1018
.10.1016/j.ijheatfluidflow.2010.08.00818.
Okajima
, J.
, Maruyama
, S.
, Takeda
, H.
, Komiya
, A.
, and Sangkwon
, J.
, 2010
, “Cooling Characteristics of Ultrafine Cryoprobe Utilizing Convective Boiling Heat Transfer in Microchannel
,” Proceedings of the 14th IHTC
, Washington DC
, Aug. 8–13, Vol. 1
, pp. 297
–306
.19.
Voller
, V. R.
, and Swaminathan
, C. R.
, 1993
, “Treatment of Discontinuous Thermal Conductivity in Control-Volume Solutions of Phase-Change Problems
,” Numer. Heat Transfer, Part B
, 24
(2
), pp. 161
–180
.10.1080/1040779930895588720.
Swaminathan
, C. R.
, and Voller
, V. R.
, 1992
, “A General Enthalpy Method for Modeling Solidification Processes
,” MTB
, 23
(5
), pp. 651
–664
.10.1007/BF0264972521.
Okajima
, J.
, Takeda
, H.
, Komiya
, A.
, and Maruyama
, S.
, 2008
, “Possibility of Micro-Cryosurgery Utilizing Cooling Needle
,” Proceedings of 16th International Conference on Mechanics in Medicine and Biology, Pittsburgh, PA, July 23–25
.22.
Deng
, Z.-S.
, and Liu
, J.
, 2005
, “Numerical Simulation of Selective Freezing of Target Biological Tissues Following Injection of Solutions With Specific Thermal Properties
,” Cryobiology
, 50
(2
), pp. 183
–192
.10.1016/j.cryobiol.2004.12.00723.
Gage
, A. A.
, and Baust
, J.
, 1998
, “Mechanisms of Tissue Injury in Cryosurgery
,” Cryobiology
, 37
(3
), pp. 171
–186
.10.1006/cryo.1998.2115Copyright © 2013 by ASME
You do not currently have access to this content.