Abstract

The selective light absorption of prestretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting the construction of transparent 3D architectures. In this study, we demonstrate the facile preparation of transparent 3D curvilinear structures with the selection of the curvature sign and chirality via the selective light absorption of detachable tapes. The sequential removal of adhesive patterns allowed sequential folding and the control of strain responsivity in a single transparent architecture. The introduction of multiple heterogeneous nonresponsive materials increased the complexity of strain engineering and functionality. External stimuli responsive kirigami-based bridge triggered the multimaterial frame to build the Gaussian curvature. Conductive material casted on the film in a pattern retained the conductivity, despite local deformation. This type of tape patterning system, adopting various materials, can achieve multifunction including transparency and conductivity.

References

1.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
.10.1088/0964-1726/23/9/094006
2.
Mailen
,
R. W.
,
Dickey
,
M. D.
,
Genzer
,
J.
, and
Zikry
,
M.
,
2017
, “
Effects of Thermo-Mechanical Behavior and Hinge Geometry on Folding Response of Shape Memory Polymer Sheets
,”
J. Appl. Phys.
,
122
(
19
), p.
195103
.10.1063/1.5000040
3.
Lazarus
,
N.
,
Smith
,
G. L.
, and
Dickey
,
M. D.
,
2019
, “
Self‐Folding Metal Origami
,”
Adv. Intell. Syst.
,
1
(
7
), p.
1900059
.10.1002/aisy.201900059
4.
Palleau
,
E.
,
Morales
,
D.
,
Dickey
,
M. D.
, and
Velev
,
O. D.
,
2013
, “
Reversible Patterning and Actuation of Hydrogels by Electrically Assisted Ionoprinting
,”
Nat. Commun.
,
4
, p.
2257
.10.1038/ncomms3257
5.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem. Int. Ed.
,
50
(
8
), pp.
1890
1895
.10.1002/anie.201006464
6.
Buckley
,
P. R.
,
McKinley
,
G. H.
,
Wilson
,
T. S.
,
Small
,
W.
, IV
,
Benett
,
W. J.
,
Bearinger
,
J. P.
,
McElfresh
,
M. W.
, and
Maitland
,
D. J.
,
2006
, “
Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices
,”
IEEE Trans. Biomed. Eng.
,
53
(
10
), pp.
2075
2083
.10.1109/TBME.2006.877113
7.
Hua
,
L.
,
Xie
,
M.
,
Jian
,
Y.
,
Wu
,
B.
,
Chen
,
C.
, and
Zhao
,
C.
,
2019
, “
Multiple-Responsive and Amphibious Hydrogel Actuator Based on Asymmetric UCST-Type Volume Phase Transition
,”
ACS Appl. Mater. Interfaces
,
11
(
46
), pp.
43641
43648
.10.1021/acsami.9b17159
8.
Hwang
,
S.
,
Rho
,
Y.
,
Jeon
,
S.-J.
,
Kim
,
T.-H.
,
Lee
,
J. Y.
,
Hong
,
Y. T.
, and
So
,
S.
,
2019
, “
Reprogrammable Three-Dimensional Configurations Using Ionomer Bilayers
,”
ACS Appl. Polym. Mater.
,
1
(
10
), pp.
2760
2767
.10.1021/acsapm.9b00693
9.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.10.1039/C1SM06564E
10.
Liu
,
Y.
,
Shaw
,
B.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2017
, “
Sequential Self-Folding of Polymer Sheets
,”
Sci. Adv.
,
3
(
3
), p.
e1602417
.10.1126/sciadv.1602417
11.
Ji
,
F.
,
Liu
,
X.
,
Sheng
,
D.
, and
Yang
,
Y.
,
2019
, “
Light-Assisted Reconfiguration of Thermosetting Polyurethane Enabled by Gradient Plasticity
,”
Ind. Eng. Chem. Res.
,
58
(
19
), pp.
8090
8096
.10.1021/acs.iecr.9b00684
12.
Davis
,
D.
,
Mailen
,
R.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2015
, “
Self-Folding of Polymer Sheets Using Microwaves and Graphene Ink
,”
RSC Adv.
,
5
(
108
), pp.
89254
89261
.10.1039/C5RA16431A
13.
Morales
,
D.
,
Podolsky
,
I.
,
Mailen
,
R. W.
,
Shay
,
T.
,
Dickey
,
M. D.
, and
Velev
,
O. D.
,
2016
, “
Ionoprinted Multi-Responsive Hydrogel Actuators
,”
Micromachines
,
7
(
6
), p.
98
.10.3390/mi7060098
14.
Wang
,
L.
,
Luo
,
B.
,
Wu
,
D.
,
Liu
,
Y.
,
Li
,
L.
, and
Liu
,
H.
,
2019
, “
Fabrication and Characterization of Thermal-Responsive Biomimetic Small-Scale Shape Memory Wood Composites With High Tensile Strength, High Anisotropy
,”
Polymers
,
11
(
11
), p.
1892
.10.3390/polym11111892
15.
Yang
,
J.
,
Zhao
,
W.
,
Yang
,
Z.
,
He
,
W.
,
Wang
,
J.
,
Ikeda
,
T.
, and
Jiang
,
L.
,
2019
, “
Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films
,”
ACS Appl. Mater. Interfaces
,
11
(
49
), pp.
46124
46131
.10.1021/acsami.9b14202
16.
Liu
,
Y.
,
Mailen
,
R.
,
Zhu
,
Y.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2014
, “
Simple Geometric Model to Describe Self-Folding of Polymer Sheets
,”
Phys. Rev. E
,
89
(
4
), p.
042601
.10.1103/PhysRevE.89.042601
17.
Mailen
,
R. W.
,
Dickey
,
M. D.
,
Genzer
,
J.
, and
Zikry
,
M. A.
,
2017
, “
A Fully Coupled Thermo-Viscoelastic Finite Element Model for Self-Folding Shape Memory Polymer Sheets
,”
J. Polym. Sci. Part B Polym. Phys.
,
55
(
16
), pp.
1207
1219
.10.1002/polb.24372
18.
Davis
,
D.
,
Chen
,
B.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2016
, “
Self-Folding of Thick Polymer Sheets Using Gradients of Heat
,”
ASME J. Mechanisms Robotics.
,
8
(
3
), p.
031014
.10.1115/1.4032209
19.
Lee
,
J. H.
,
Choi
,
J.-C.
,
Won
,
S.
,
Lee
,
J.-W.
,
Lee
,
J. G.
,
Kim
,
H. R.
, and
Wie
,
J. J.
,
2020
, “
Light–Driven Complex 3D Shape Morphing of Glassy Polymers by Resolving Spatio–Temporal Stress Confliction
,”
Sci. Rep.
,
10
, p.
10840
.10.1038/s41598-020-67660-9
20.
Chen
,
T.
,
Ji
,
C.
,
Jin
,
Y.
,
Wang
,
J.
, and
Jin
,
Q.
,
2018
, “
Different Geometric Information Integrated Within a Single Polydopamine Pattern to Yield Dual Shape Transformations
,”
Macromol. Mater. Eng.
,
303
(
10
), p.
1800319
.10.1002/mame.201800319
You do not currently have access to this content.