Abstract

The influence of a subnanosecond pulsed laser-based scribing of copper (Cu) and aluminum (Al) in salt solutions (NaCl and KCl) on the formation of microchannels is reported. This technique allows laser scribing along with selective etching of Cu and Al thin films. The focused laser beam can elevate the surface temperature on the sample and hence the chemical reaction rate, resulting in combined ablation with selective-area etching. The depth of microchannels in Cu and Al films is increased by 3–5 μm using the proposed hybrid technique. The average surface roughness values in the microchannel are decreased compared to that of scribing in water and air. The hybrid approach of laser-based scribing combined with electrochemical etching in neutral salt solutions allows uniform channel with almost no redeposit layer and debris on the channel edges. Further, an approach wherein, an application of direct current (DC) voltage (1.2 V) between the tool and the workpiece while laser scribing of Cu and Al in salt solution was demonstrated to improve the channel depth by few micrometers. This hybrid machining technique has also resulted in a reduction in the surface oxidation near the laser-ablated zone compared to that observed in air and water-based experiments.

References

1.
Nammi
,
S.
,
Jain
,
A. K.
,
Vasa
,
N. J.
,
Gurusamy
,
B.
, and
Mathur
,
A. C.
,
2016
, “
Micro Scribing of Copper and Aluminum Thin Films in Air and Water Using Pulsed Nd3+:YAG Laser
,”
J. Laser Micro Nanoeng.
,
11
(
1
), pp.
46
52
.10.2961/jlmn.2016.01.0009
2.
Huang
,
B.
, and
Jia
,
Q.
,
2019
, “
Accurate Modeling of Conductor Rough Surfaces in Waveguide Devices
,”
Electronics
,
8
(
3
), p.
269
.10.3390/electronics8030269
3.
Jackson
,
M.
, and
O'neill
,
W.
,
2003
, “
Laser Micro-Drilling of Tool Steel Using Nd: YAG Lasers
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
517
525
.10.1016/S0924-0136(03)00651-4
4.
Krstulović
,
N.
,
Shannon
,
S.
,
Stefanuik
,
R.
, and
Fanara
,
C.
,
2013
, “
Underwater-Laser Drilling of Aluminum
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1765
1773
.10.1007/s00170-013-5141-4
5.
Kruusing
,
A.
,
2004
, “
Underwater and Water-Assisted Laser Processing: Part 2—Etching, Cutting and Rarely Used Methods
,”
Opt. Lasers Eng.
,
41
(
2
), pp.
329
352
.10.1016/S0143-8166(02)00143-4
6.
Sesselmann
,
W.
, and
Chuang
,
T.
,
1985
, “
Chlorine Surface Interaction and Laser‐Induced Surface Etching Reactions
,”
J. Vac. Sci. Technol. B: Microelectron. Process. Phenom.
,
3
(
5
), pp.
1507
1512
.10.1116/1.582975
7.
Tang
,
H.
, and
Herman
,
I. P.
,
1992
, “
Anomalous Local Laser Etching of Copper by Chlorine
,”
Appl. Phys. Lett.
,
60
(
17
), pp.
2164
2166
.10.1063/1.107071
8.
Von Gutfeld
,
R. J.
,
Romankiw
,
L.
, and
Acosta
,
R.
,
1982
, “
Laser-Enhanced Plating and Etching: Mechanisms and Applications
,”
IBM J. Res. Dev.
,
26
(
2
), pp.
136
144
.10.1147/rd.262.0136
9.
Von Gutfeld
,
R. J.
, and
Sheppard
,
K. G.
,
1998
, “
Electrochemical Microfabrication by Laser-Enhanced Photothermal Processes
,”
IBM J. Res. Dev.
,
42
(
5
), pp.
639
653
.10.1147/rd.425.0639
10.
Oh
,
K. H.
,
Lee
,
S.
, and
Jeong
,
S.
,
2016
, “
Investigation of Thermochemical Reaction of Metallic Grooves Manufactured With Laser Micromachining in Liquid
,”
J. Laser Micro Nanoeng.
,
11
(
1
), pp.
25
29
.10.2961/jlmn.2016.01.0005
11.
Luo
,
F.
,
Guan
,
Y.
,
Ong
,
W.
,
Du
,
Z.
,
Ho
,
G.
,
Li
,
F.
,
Sun
,
S.
,
Lim
,
G.
, and
Hong
,
M.
,
2014
, “
Enhancement of Pulsed Laser Ablation in Environmentally Friendly Liquid
,”
Opt. Express
,
22
(
20
), pp.
23875
23882
.10.1364/OE.22.023875
12.
Datta
,
M.
,
Romankiw
,
L.
,
Vigliotti
,
D.
, and
Von Gutfeld
,
R. J.
,
1987
, “
Laser Etching of Metals in Neutral Salt Solutions
,”
Appl. Phys. Lett.
,
51
(
24
), pp.
2040
2042
.10.1063/1.98285
13.
Li
,
L.
, and
Achara
,
C.
,
2004
, “
Chemical Assisted Laser Machining for the Minimisation of Recast and Heat Affected Zone
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
175
178
.10.1016/S0007-8506(07)60672-6
14.
Tang
,
Y.
,
2002
, “
Laser Enhanced Electrochemical Machining Process
,”
Mater. Manuf. Processes
,
17
(
6
), pp.
789
796
.10.1081/AMP-120016057
15.
Thanigaivelan
,
R.
,
Arunachalam
,
R.
,
Kumar
,
M.
, and
Dheeraj
,
B. P.
,
2018
, “
Performance of Electrochemical Micromachining of Copper Through Infrared Heated Electrolyte
,”
Mater. Manuf. Processes
,
33
(
4
), pp.
383
389
.10.1080/10426914.2017.1279304
16.
Nammi
,
S.
,
Shiby
,
S.
,
Amroop
,
B. S.
, and
Vasa
,
N. J.
,
2018
, “
Hybrid Laser Scribing and Chemical Etching Technique Using Pulsed Nd3+: YAG Laser to Fabricate Controlled Micro Channel Profile
,”
J. Laser Micro Nanoeng.
,
13
(
3
), pp.
150
154
.10.2961/jlmn.2018.03.0002
17.
Shiby
,
S.
,
Nammi
,
S.
,
Vasa
,
N. J.
, and
Krishnan
,
S.
,
2018
, “
Pulsed Laser Micro-Scribing of Copper Thin Films on Polyimide Substrate in NaCl Solution
,”
Proc. SPIE
10520
, p.
1052010
.10.1117/12.2289724
18.
Han
,
X.
,
Peng
,
Y.
,
Zhang
,
Y.
,
Ma
,
Z.
, and
Wang
,
J.
,
2015
, “
Research on the Attenuation Characteristics of Some Inorganic Salts in Seawater
,”
J. Eur. Opt Soc.
,
10
, p.
15045
.10.2971/jeos.2015.15045
19.
Cabalin
,
L.
, and
Laserna
,
J.
,
1998
, “
Experimental Determination of Laser Induced Breakdown Thresholds of Metals Under Nanosecond Q-Switched Laser Operation
,”
Spectrochim. Acta Part B
,
53
(
5
), pp.
723
730
.10.1016/S0584-8547(98)00107-4
20.
Nammi
,
S.
,
Vasa
,
N. J.
,
Gurusamy
,
B.
, and
Mathur
,
A. C.
,
2017
, “
Single Laser Based Pump-Probe Technique to Study Plasma Shielding During Nanosecond Laser Ablation of Copper Thin Films
,”
J. Phys. D
,
50
(
35
), p.
355204
.10.1088/1361-6463/aa7c4d
21.
Behera
,
R. R.
,
Sankar
,
M. R.
,
Swaminathan
,
J.
,
Kumar
,
I.
,
Sharma
,
A. K.
, and
Khare
,
A.
,
2016
, “
Experimental Investigation of Underwater Laser Beam Micromachining (UW-LBμM) on 304 Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
1969
1982
.10.1007/s00170-016-8635-z
22.
Benton
,
M.
,
Hossan
,
M. R.
,
Konari
,
P. R.
, and
Gamagedara
,
S.
,
2019
, “
Effect of Process Parameters and Material Properties on Laser Micromachining of Microchannels
,”
Micromachines
,
10
(
2
), p.
123
.10.3390/mi10020123
23.
Nammi
,
S.
,
Vasa
,
N. J.
,
Balaganesan
,
G.
,
Gupta
,
S.
, and
Mathur
,
A. C.
,
2015
, “
Influence of Pulsed Nd3+:YAG Laser Beam Profile and Wavelength on Microscribing of Copper and Aluminum Thin Films
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
14
(
4
), p.
044503
.10.1117/1.JMM.14.4.044503
24.
Vladoiu
,
I.
,
Stafe
,
M.
,
Negutu
,
C.
, and
Popescu
,
I.
,
2008
, “
The Dependence of the Ablation Rate of Metals on Nanosecond Laser Fluence and Wavelength
,”
J. Optoelectron. Adv. Mater.
,
10
(
12
), pp.
3177
3181
.https://old.joam.inoe.ro/index.php?option=magazine&op=view&idu=1774&catid=33AQ7
25.
Tsai
,
C.-H.
, and
Li
,
C.-C.
,
2009
, “
Investigation of Underwater Laser Drilling for Brittle Substrates
,”
J. Mater. Proces. Technol.
,
209
(
6
), pp.
2838
2846
.10.1016/j.jmatprotec.2008.06.057
26.
Maisterrena-Epstein
,
R.
,
Camacho-López
,
S.
,
Escobar-Alarcón
,
L.
, and
Camacho-López
,
M.
,
2007
, “
Nanosecond Laser Ablation of Bulk Al, Bronze, and Cu: Ablation Rate Saturation and Laser-Induced Oxidation
,”
Superficies Vacío
,
20
(
3
), pp.
1
5
.https://www.fis.cinvestav.mx/~smcsyv/supyvac/20_3
27.
Cotton
,
F. A.
, and
Wilkinson
,
G.
,
1987
,
Basic Inorganic Chemistry
, 3rd ed.,
Wiley
,
Singapore
, p.
22
.
28.
Bogaerts
,
A.
,
Chen
,
Z.
,
Gijbels
,
R.
, and
Vertes
,
A.
,
2003
, “
Laser Ablation for Analytical Sampling: What Can We Learn From Modeling?
,”
Spectrochim. Acta Part B
,
58
(
11
), pp.
1867
1893
.10.1016/j.sab.2003.08.004
29.
Wee
,
L.
, and
Li
,
L.
,
2005
, “
Multiple-Layer Laser Direct Writing Metal Deposition in Electrolyte Solution
,”
Appl. Surf. Sci.
,
247
(
1–4
), pp.
285
293
.10.1016/j.apsusc.2005.01.142
30.
Skoczypiec
,
S.
,
2018
, “
Electrochemical Methods of Micropart's Manufacturing
,”
Micro and Precision Manufacturing
,
Springer International Publishing
,
Cham, Switzerland
, pp.
21
40
.
You do not currently have access to this content.