Abstract

Metal foams made by the melt route naturally have an interface region between the porous and nonporous structures. We investigate here the possible use of monolithic foam structures with such interfaces wherein the porous structure provides needed light-weighting while the nonporous region provides a functional surface such as the one needed for optics. Face turning is carried out in the nonporous region very near the interface to the porous areas. Using micro-computed tomography scans, pore positions are determined and the proximal effect of pores on the machined surface quilting effects are studied. Studies show that pore as near as 400 μm to the machined surface can cause significant quilting. Progress in developing finite element models to enable such predictions is also shown. This study could pave the way for the use of such structures for telescopic mirrors.

References

1.
Ahmad
,
A.
,
2017
, “
Handbook of Optomechanical Engineering
,”
Light Weight Mirror Design
, ed.
D.
Vukobratovich
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, pp.
192
193
.
2.
Krim
,
M.
, and
Russo
,
J.
,
1983
, “
LDR Segmented Mirror Technology Assessment Study
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-166493
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830023278.pdf
3.
Hull
,
T.
,
Clarkson
,
A.
,
Gardopee
,
G.
,
Jedamzik
,
R.
,
Leys
,
A.
,
Pepi
,
J.
,
Piché
,
F.
,
Schäfer
,
M.
,
Seibert
,
V.
,
Thomas
,
A.
,
Werner
,
T.
, and
Westerhoff
,
T.
,
2012
, “
Game-Changing Approaches to Affordable Advanced Lightweight Mirrors II: New Cases Analyzed for Extreme ZERODUR Light Weighting and Relief From the Classical Polishing Parameter Constraint
,”
Paper No. SPIE-845050
.
4.
Eng
,
R.
,
Arnold
,
W. R.
,
Baker
,
M. A.
,
Bevan
,
R. M.
,
Burdick
,
G.
,
Effinger
,
M. R.
,
Gaddy
,
D. E.
,
Goode
,
B. K.
,
Hanson
,
C.
,
Hogue
,
W. D.
,
Kegley
,
J. R.
,
Kirk
,
C.
,
Maffett
,
S. P.
,
Matthews
,
G. W.
,
Siler
,
R. D.
,
Smith
,
W. S.
,
Stahl
,
H. P.
,
Tucker
,
J. M.
, and
Wright
,
E. R.
,
2013
, “
Cryogenic Optical Performance of a Light Weighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model
,”
Paper No. SPIE-88370B
.
5.
Korhonen
,
T.
,
Keinanen
,
P.
,
Pasanen
,
M.
, and
Sillanpaa
,
A.
,
2008
, “
Polishing and Testing of the 3.5 m SiC M1 Mirror of the Herschel Space Observatory of ESA
,”
Paper No. SPIE-710218
.
6.
Hsu
,
Y. W.
, and
Johnston
,
A.
,
1995
, “
Design and Analysis of 1-m Beryllium Space Telescope
,”
Paper No. SPIE-2542
.
7.
Saines
,
G.
, and
Tomilin
,
M. G.
,
1999
, “
Magic Mirrors of the Orient
,”
J. Opt. Technol.
,
66
(
8
), pp.
758
765
.10.1364/JOT.66.000758
8.
Min
,
E. T. K.
,
Watt
,
S. M.
,
Sreemathy
,
P.
,
Huang
,
L.
, and
Asundi
,
A.
,
2013
, “
Investigation of Surface and Subsurface Profile, Techniques of Measurement, and Replication of the Chinese Magic Mirror
,”
Paper No. SPIE-876930
.
9.
Adnan
,
A. S.
,
Ramalingam
,
V.
,
Ko
,
J. H.
, and
Subbiah
,
S.
,
2014
, “
Nano Texture Generation in Single Point Diamond Turning Using Backside Patterned Workpiece
,”
Manuf. Lett.
,
2
(
2
), pp.
44
48
.10.1016/j.mfglet.2013.10.004
10.
McClelland
,
S.
, and
Content
,
D. A.
,
2001
, “
Design Manufacture and Test of a Cryo-Stable Offner Relay Using Aluminum Foam Core Optics
,”
Paper No. SPIE-4451
.
11.
Pollard
,
W.
,
Vukobratovich
,
D.
, and
Richard
,
R.
,
1987
, “
The Structural Analysis of a Light-Weight Aluminum Foam Core Mirror
,”
Paper No. SPIE-0748
.
12.
Banhart
,
J.
,
2001
, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.10.1016/S0079-6425(00)00002-5
13.
Atturan
,
U. A.
,
Nandam
,
S. H.
,
Murty
,
B. S.
, and
Sankaran
,
S.
,
2016
, “
Processing and Characterization of In-Situ TiB2 Stabilized Closed Cell Aluminum Alloy Composite Foams
,”
Mater. Des.
,
101
, pp.
245
253
.10.1016/j.matdes.2016.03.153
14.
Mak
,
S. U.
, and
Yip
,
D. Y.
,
2001
, “
Secrets of the Chinese Magic Mirror Replica
,”
Phys. Educ.
,
36
(
2
), pp.
102
107
.10.1088/0031-9120/36/2/302
15.
Deshmukh
,
S.
,
Ronge
,
H.
, and
Ramamoorthy
,
S.
,
2019
, “
Design of Periodic Foam Structures for Acoustic Applications: Concept, Parametric Study and Experimental Validation
,”
Mater. Des.
,
175
, p.
107830
.10.1016/j.matdes.2019.107830
16.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
17.
Gupta
,
S.
,
Abotula
,
S.
, and
Shukla
,
A.
,
2014
, “
Determination of Johnson-Cook Parameters for Cast Aluminum Alloys
,”
ASME J. Eng. Mater. Technol.
,
136
(
3
), p.
034502
.10.1115/1.4027793
18.
Sandhiyaa
,
Y. J. N.
,
Thamizharasan
,
M. M.
,
Subramanyam
,
A. B. V.
,
Vijay
,
S.
, and
Kumar
,
S. S.
,
2018
, “
Finite Element Analysis of Tool Particle Interaction, Particle Volume Fraction, Size, Shape and Distribution in Machining of A356/SiCp
,”
Mater. Today
,
5
, pp.
16800
16806
.10.1016/j.matpr.2018.06.006
19.
Jain
,
V. K.
,
2013
, “
Handbook of Optomechanical Engineering
,”
Microturning
and
V. K.
Suri
, eds.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, p.
63
.
20.
Subbiah
,
S.
, and
Melkote
,
S. N.
,
2008
, “
Effect of Finite Edge Radius on Ductile Fracture Ahead of the Cutting Tool Edge in Micro-Cutting of Al2024-T3
,”
Mater. Sci. Eng. A
,
474
(
1–2
), pp.
283
300
.10.1016/j.msea.2007.04.116
21.
Woon
,
K. S.
,
Rahman
,
M.
,
Fang
,
F. Z.
,
Neo
,
K. S.
, and
Liu
,
K.
,
2008
, “
Investigations of Tool Edge Radius Effect in Micromachining: A FEM Simulation Approach
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
204
211
.10.1016/j.jmatprotec.2007.04.137
You do not currently have access to this content.