Abstract

The plunger part in temporary electronic connectors is traditionally fabricated by micromachining. Progressive forming of microparts by directly using sheet metals is developed and proven to be an efficient microforming process to overcome some intrinsic drawback in realization of mass production of microparts. By employing this unique micromanufacturing process, an efficient approach with progressive microforming is developed to fabricate plunger-shaped microparts. In this endeavor, a progressive forming system for making microplungers using extrusion and blanking operations is developed, and the grain size effect affected deformation behaviors and of surface qualities of the microformed parts are studied. The knowledge for fabrication of plunger-shaped microparts via progressive microforming is developed, and the in-depth understanding and insight into the deformation behaviors and tailoring the product quality and properties will facilitate the design and development of the forming process by using this unique microforming approach.

References

1.
Fu
,
M. W.
, and
Chan
,
W. L.
,
2013
, “
A Review on the State-of-the-Art Microforming Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2411
2437
.10.1007/s00170-012-4661-7
2.
Cao
,
J.
,
Brinksmeier
,
E.
,
Fu
,
M.
,
Gao
,
R. X.
,
Liang
,
B.
,
Merklein
,
M.
,
Schmidt
,
M.
, and
Yanagimoto
,
J.
,
2019
, “
Manufacturing of Advanced Smart Tooling for Metal Forming
,”
CIRP Ann.
,
68
(
2
), pp.
605
628
.10.1016/j.cirp.2019.05.001
3.
Fu
,
M. W.
, and
Chan
,
W. L.
,
2013
, “
Micro-Scaled Progressive Forming of Bulk Micropart Via Directly Using Sheet Metals
,”
Mater Des.
,
49
, pp.
774
783
.10.1016/j.matdes.2013.02.045
4.
Xu
,
Z. T.
,
Peng
,
L. F.
,
Lai
,
X. M.
, and
Fu
,
M. W.
,
2014
, “
Geometry and Grain Size Effects on the Forming Limit of Sheet Metals in Micro-Scaled Plastic Deformation
,”
Mater. Sci. Eng.: A
,
611
, pp.
345
353
.10.1016/j.msea.2014.05.060
5.
Wang
,
X.
,
Xu
,
J.
,
Shan
,
D.
,
Guo
,
B.
, and
Cao
,
J.
,
2017
, “
Effects of Specimen and Grain Size on Electrically-Induced Softening Behavior in Uniaxial Micro-Tension of AZ31 Magnesium Alloy: Experiment and Modeling
,”
Mater Des.
,
127
, pp.
134
143
.10.1016/j.matdes.2017.04.064
6.
Liu
,
J. G.
,
Fu
,
M. W.
, and
Chan
,
W. L.
,
2012
, “
A Constitutive Model for Modeling of the Deformation Behavior in Microforming With a Consideration of Grain Boundary Strengthening
,”
Comput. Mater. Sci.
,
55
, pp.
85
94
.10.1016/j.commatsci.2011.11.018
7.
Ran
,
J. Q.
, and
Fu
,
M. W.
,
2014
, “
A Hybrid Model for Analysis of Ductile Fracture in Micro-Scaled Plastic Deformation of Multiphase Alloys
,”
Int. J. Plasticity
,
61
, pp.
1
16
.10.1016/j.ijplas.2013.11.006
8.
Zheng
,
J. Y.
,
Yang
,
H. P.
,
Fu
,
M. W.
, and
Ng
,
C.
,
2019
, “
Study on Size Effect Affected Progressive Microforming of Conical Flanged Parts Directly Using Sheet Metals
,”
J. Mater. Process. Technol.
,
272
, pp.
72
86
.10.1016/j.jmatprotec.2019.05.007
9.
Ghassemali
,
E.
,
Tan
,
M. J.
,
Jarfors
,
A. E. W.
, and
Lim
,
S. C. V.
,
2013
, “
Progressive Microforming Process: Towards the Mass Production of Micro-Parts Using Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5–8
), pp.
611
621
.10.1007/s00170-012-4352-4
10.
Hansen
,
N.
,
2004
, “
Hall–Petch Relation and Boundary Strengthening
,”
Scr. Mater.
,
51
(
8
), pp.
801
806
.10.1016/j.scriptamat.2004.06.002
You do not currently have access to this content.