Abstract

Powder injection molding (PIM) is capable of manufacturing complex small components out of metals and ceramics. With increasing market demand micropowder injection molding (micro-PIM) is improving rapidly which calls for improved numerical models of different stages of PIM. The injection stage is quite important as different defects may occur during injection that cannot be eliminated in the subsequent processes. Injection pressure and velocity are critical controlling parameters to manufacture a defect-free component. However, in most of the simulations, either injection pressure or injection velocity is taken as a constant value, while in reality, the injection molding of the piston moves at different speeds, and injection pressure and velocity change accordingly. In the experimental part of the present work, the piston movement is tracked using a high-speed camera which was mimicked in mold filling simulation of an alumina feedstock, considering the Dynamic Mesh approach. The solution of the full Navier–Stokes equation in an Eulerian-multiphase framework is used to simulate the mold filling where the secondary phase is air that is displaced by moving melt front. Additionally, a scalar equation was used to account for the liquid fraction of the feedstock. It is further demonstrated that the proposed model provides insight into the fluid-dynamic aspect of the mold-filling process.

References

1.
German
,
R.
, and
Bose
,
A.
,
1997
,
Injection Molding of Metals and Ceramics
,
Metal Powder Industries Federation
,
Princeton, NJ
.
2.
Piotter
,
V.
,
Honza
,
E.
,
Mueller
,
T.
, and
Plewa
,
K.
,
2012
, “
Recent Developments in Metal and Ceramic Micro Injection Moulding
,”
European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings
,
The European Powder Metallurgy Association
, Basel, Switzerland, Sept. 16–19, p.
1
.
3.
Attia
,
U. M.
, and
Alcock
,
J. R.
,
2011
, “
A Review of Micro-Powder Injection Moulding as a Microfabrication Technique
,”
J. Micromech. Microeng.
,
21
(
4
), p.
043001
.10.1088/0960-1317/21/4/043001
4.
Imgrund
,
P.
,
Rota
,
A.
,
Petzoldt
,
F.
, and
Simchi
,
A.
,
2007
, “
Manufacturing of Multi-Functional Micro Parts by Two-Component Metal Injection Moulding
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1–2
), pp.
176
186
.10.1007/s00170-006-0666-4
5.
Mohamad Nor
,
N. H.
,
Muhamad
,
N.
,
Ismail
,
M. H.
,
Jamaludin
,
K. R.
,
Ahmad
,
S.
, and
Ibrahim
,
M. H. I.
,
2009
, “
Flow Behaviour to Determine the Defects of Green Part in Metal Injection Molding
,”
Int. J. Mech. Mater. Eng.
,
4
(
1
), pp.
70
75
.https://www.academia.edu/download/35908303/hafiez.pdf
6.
Urval
,
R.
,
Wu
,
C.
,
Atre
,
S.
,
Park
,
S.
, and
German
,
R.
,
2007
, “
CAE-Based Process Design of PIM for Microfluidic Device Components
,”
PIM Int.
,
1
, pp. 53
58
.
7.
ANSYS Inc. (US)
,
2015
, “
Ansys Users' Guide
,”
Aging
,
7
(
11
), pp.
956
963
.10.18632/aging.100841
8.
Samanta
,
S. K.
,
2010
, “
Multiphase Flow Numerical Modelling for Simulation of the Injection Stage of Powder Injection Moulding (PIM)
,” Doctoral dissertation,
Indian Institute of Technology
,
Kharagpur, India
.
9.
Islam
,
S. K. T.
,
Samanta
,
S. K.
,
Lohar
,
A. K.
,
Das
,
S.
, and
Bandyopadhyay
,
A.
,
2021
, “
Thermal and Rheological Behaviour of a Wax Based Binder and an Alumina Feedstock for Micro-PIM Application
,”
Advances in Thermal Engineering, Manufacturing, and Production Management Select Proceedings of ICTEMA 2020
,
G.
Sadhan Kumar
,
G.
Koushik
,
D.
Santanu
,
D.
Pranab Kumar
, and
K.
Arijit
, eds.,
Springer
,
Singapore
, pp.
245
258
.
10.
Islam
,
S. T.
,
Samanta
,
S. K.
,
Lohar
,
A. K.
, and
Bandyopadhyay
,
A.
,
2019
, “
Rheological Study of Alumina Feedstock for a Micro-Powder Injection Moulding Application
,”
Mater. Res. Express
,
6
(
9
), p.
095204
.10.1088/2053-1591/ab2ce6
11.
Živcová
,
Z.
,
Gregorová
,
E.
,
Pabst
,
W.
,
Smith
,
D. S.
,
Michot
,
A.
, and
Poulier
,
C.
,
2009
, “
Thermal Conductivity of Porous Alumina Ceramics Prepared Using Starch as a Pore-Forming Agent
,”
J. Eur. Ceram. Soc.
,
29
(
3
), pp.
347
353
.10.1016/j.jeurceramsoc.2008.06.018
12.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
13.
Islam
,
S. T.
,
Samanta
,
S. K.
,
Das
,
S.
, and
Chattopadhyay
,
H.
,
2022
, “
A Numerical Model to Predict the Powder–Binder Separation During Micro-Powder Injection Molding
,”
J. Am. Ceram. Soc.
,
105
(
7
), pp.
4608
4620
.10.1111/jace.18401
14.
Samanta
,
S. K.
,
Chattopadhyay
,
H.
,
Pustal
,
B.
,
Berger
,
R.
,
Godkhindi
,
M. M.
, and
Bührig-Polaczek
,
A.
,
2008
, “
A Numerical Study of Solidification in Powder Injection Molding Process
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
672
682
.10.1016/j.ijheatmasstransfer.2007.04.033
15.
Hassan
,
H.
,
Regnier
,
N.
,
Pujos
,
C.
, and
Defaye
,
G.
,
2008
, “
Effect of Viscous Dissipation on the Temperature of the Polymer During Injection Molding Filling
,”
Polym. Eng. Sci.
,
48
(
6
), pp.
1199
1206
.10.1002/pen.21077
You do not currently have access to this content.