Abstract

Simultaneous micro- and nanoscale etching of silicon on a wafer-scale is nowadays performed using plasma etching techniques. These plasma techniques, however, suffer from low throughput due to aspect-ratio dependent etch (ARDE) rate, etch lag from changes in feature size, loading effects from increased etch area, and undesirable surface characteristics such as sidewall taper and scalloping, which are particularly problematic at the nanoscale and can affect the etch uniformity. Additionally, the hardware required for plasma etching can be very expensive. A potential alternative, which addresses the above issues with plasma etching is metal assisted chemical etch (MacEtch). To date, however, an integrated micro- and nanoscale MacEtch process, which has uniform and clean (i.e., without nanowire-like defects in microscale areas) etch front has not been presented in the literature. In this work, we present for the first time a feasible process flow for simultaneous micro-and nanoscale silicon etching without nanowire-like defects, which we call integrated micro- and nanoscale MacEtch (IMN-MacEtch). Successful etching of silicon features ranging from 100 nm to 100 μm was achieved with etch rates of about 1.8 μm/min in a single step to achieve features with an aspect ratio (AR) ∼18:1. We thus conclude that the process represents a feasible alternative to current dry etch methods for patterning feature sizes spanning three orders of magnitude.

References

1.
Li
,
X.
,
2012
, “
Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics
,”
Curr. Opin. Solid State Mater. Sci.
,
16
(
2
), pp.
71
81
.10.1016/j.cossms.2011.11.002
2.
Lin
,
H.
,
Wu
,
F.
,
Gao
,
P.
, and
Shen
,
W.
,
2019
, “
Shape-Controlled Silicon Microwire Arrays From Au–Ag-Catalyzed Metal-Assisted Chemical Etching for Radial Junction Solar Cells
,”
ACS Appl. Energy Mater.
,
2
(
8
), pp.
5871
5876
.10.1021/acsaem.9b01006
3.
Pan
,
C.
,
Luo
,
Z.
,
Xu
,
C.
,
Luo
,
J.
,
Liang
,
R.
,
Zhu
,
G.
,
Wu
,
W.
,
Guo
,
W.
,
Yan
,
X.
,
Xu
,
J.
,
Wang
,
Z. L.
, and
Zhu
,
J.
,
2011
, “
Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si 1–x Ge x Wires: Fabrication, Characterization, and Photovoltaic Application
,”
ACS Nano
,
5
(
8
), pp.
6629
6636
.10.1021/nn202075z
4.
Um
,
H. D.
,
Kim
,
N.
,
Lee
,
K.
,
Hwang
,
I.
,
Hoon Seo
,
J.
,
Yu
,
Y. J.
,
Duane
,
P.
,
Wober
,
M.
, and
Seo
,
K.
,
2015
, “
Versatile Control of Metal-Assisted Chemical Etching for Vertical Silicon Microwire Arrays and Their Photovoltaic Applications
,”
Sci. Rep.
,
5
(
May
), pp.
1
11
.10.1038/srep11277
5.
Smith
,
J. T.
,
Wunsch
,
B. H.
,
Dogra
,
N.
,
Ahsen
,
M. E.
,
Lee
,
K.
,
Yadav
,
K. K.
,
Weil
,
R.
, et al.,
2018
, “
Integrated Nanoscale Deterministic Lateral Displacement Arrays for Separation of Extracellular Vesicles From Clinically-Relevant Volumes of Biological Samples
,”
Lab Chip
,
18
(
24
), pp.
3913
3925
.10.1039/C8LC01017J
6.
Wunsch
,
B. H.
,
Smith
,
J. T.
,
Gifford
,
S. M.
,
Wang
,
C.
,
Brink
,
M.
,
Bruce
,
R. L.
,
Austin
,
R. H.
,
Stolovitzky
,
G.
, and
Astier
,
Y.
,
2016
, “
Nanoscale Lateral Displacement Arrays for the Separation of Exosomes and Colloids Down to 20 Nm
,”
Nat. Nanotechnol.
,
11
(
11
), pp.
936
940
.10.1038/nnano.2016.134
7.
Davis
,
J. A.
,
Inglis
,
D. W.
,
Morton
,
K. J.
,
Lawrence
,
D. A.
,
Huang
,
L. R.
,
Chou
,
S. Y.
,
Sturm
,
J. C.
, and
Austin
,
R. H.
,
2006
, “
Deterministic Hydrodynamics: Taking Blood Apart
,”
Proc. Natl. Acad. Sci. USA.
,
103
(
40
), pp.
14779
14784
.10.1073/pnas.0605967103
8.
Loutherback
,
K.
,
D'Silva
,
J.
,
Liu
,
L.
,
Wu
,
A.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
,
2012
, “
Deterministic Separation of Cancer Cells From Blood at 10 ML/Min
,”
AIP Adv.
,
2
(
4
), p. 042107.10.1063/1.4758131
9.
Wunsch
,
B. H.
,
Hsieh
,
K. Y.
,
Kim
,
S. C.
,
Pereira
,
M.
,
Lukashov
,
S.
,
Scerbo
,
C.
,
Papalia
,
J. M.
,
Duch
,
E. A.
,
Stolovitzky
,
G.
,
Gifford
,
S. M.
, and
Smith
,
J. T.
,
2021
, “
Advancements in Throughput, Lifetime, Purification, and Workflow for Integrated Nanoscale Deterministic Lateral Displacement
,”
Adv. Mater. Technol.
,
6
(
4
), pp.
1
12
.10.1002/admt.202001083
10.
Qian
,
Y.
,
Magginetti
,
D. J.
,
Jeon
,
S.
,
Yoon
,
Y.
,
Olsen
,
T. L.
,
Wang
,
M.
,
Gerton
,
J. M.
, and
Yoon
,
H. P.
,
2020
, “
Heterogeneous Optoelectronic Characteristics of Si Micropillar Arrays Fabricated by Metal-Assisted Chemical Etching
,”
Sci. Rep.
,
10
(
1
), pp.
1
10
.10.1038/s41598-020-73445-x
11.
Alhmoud
,
H.
,
Brodoceanu
,
D.
,
Elnathan
,
R.
,
Kraus
,
T.
, and
Voelcker
,
N. H.
,
2021
, “
A MACEing Silicon: Towards Single-Step Etching of Defined Porous Nanostructures for Biomedicine
,”
Prog. Mater. Sci.
,
116
(
December 2019
), p.
100636
.10.1016/j.pmatsci.2019.100636
12.
Lin
,
H. I.
,
Kuo
,
S. W.
,
Yen
,
T. J.
, and
Lee
,
O. K.
,
2018
, “
SiNWs Biophysically Regulate the Fates of Human Mesenchymal Stem Cells
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
.10.1038/s41598-018-30854-3
13.
Refino
,
A. D.
,
Yulianto
,
N.
,
Syamsu
,
I.
,
Nugroho
,
A. P.
,
Hawari
,
N. H.
,
Syring
,
A.
,
Kartini
,
E.
, et al.,
2021
, “
Versatilely Tuned Vertical Silicon Nanowire Arrays by Cryogenic Reactive Ion Etching as a Lithium-Ion Battery Anode
,”
Sci. Rep.
,
11
(
1
), pp.
1
15
.10.1038/s41598-021-99173-4
14.
Romano
,
L.
,
Kagias
,
M.
,
Vila-Comamala
,
J.
,
Jefimovs
,
K.
,
Tseng
,
L. T.
,
Guzenko
,
V. A.
, and
Stampanoni
,
M.
,
2020
, “
Metal Assisted Chemical Etching of Silicon in the Gas Phase: A Nanofabrication Platform for X-Ray Optics
,”
Nanoscale Horiz.
,
5
(
5
), pp.
869
879
.10.1039/C9NH00709A
15.
Li
,
K.
,
Wojcik
,
M. J.
,
Divan
,
R.
,
Ocola
,
L. E.
,
Shi
,
B.
,
Rosenmann
,
D.
, and
Jacobsen
,
C.
,
2017
, “
Fabrication of Hard X-Ray Zone Plates With High Aspect Ratio Using Metal-Assisted Chemical Etching
,”
J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas., Phenom.
,
35
(
6
), p.
06G901
.10.1116/1.4991794
16.
Akan
,
R.
,
Parfeniukas
,
K.
,
Vogt
,
C.
,
Toprak
,
M. S.
, and
Vogt
,
U.
,
2018
, “
Reaction Control of Metal-Assisted Chemical Etching for Silicon-Based Zone Plate Nanostructures
,”
RSC Adv.
,
8
(
23
), pp.
12628
12634
.10.1039/C8RA01627E
17.
Ma
,
Z.
,
Jiang
,
C.
,
Li
,
X.
,
Ye
,
F.
, and
Yuan
,
W.
,
2013
, “
Controllable Fabrication of Periodic Arrays of High-Aspect-Ratio Micro-Nano Hierarchical Structures and Their Superhydrophobicity
,”
J. Micromech. Microeng.
,
23
(
9
), p.
095027
.10.1088/0960-1317/23/9/095027
18.
Kim
,
B. S.
,
Shin
,
S.
,
Shin
,
S. J.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2011
, “
Micro-Nano Hybrid Structures With Manipulated Wettability Using a Two-Step Silicon Etching on a Large Area
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
333
.10.1186/1556-276X-6-333
19.
Elsayed
,
M. Y.
,
Gouda
,
A. M.
,
Ismail
,
Y.
, and
Swillam
,
M. A.
,
2017
, “
Silicon-Based SERS Substrates Fabricated by Electroless Etching
,”
J. Light. Technol.
,
35
(
14
), pp.
3075
3081
.10.1109/JLT.2017.2707476
20.
Wu
,
B.
,
Kumar
,
A.
, and
Pamarthy
,
S.
,
2010
, “
High Aspect Ratio Silicon Etch: A Review
,”
J. Appl. Phys.
,
108
(
5
), p.
051101
.10.1063/1.3474652
21.
Henry
,
M. D.
,
Welch
,
C.
, and
Scherer
,
A.
,
2009
, “
Techniques of Cryogenic Reactive Ion Etching in Silicon for Fabrication of Sensors
,”
J. Vac. Sci. Technol. A
,
27
(
5
), pp.
1211
1216
.10.1116/1.3196790
22.
Tang
,
Y.
,
Sandoughsaz
,
A.
,
Owen
,
K. J.
, and
Najafi
,
K.
,
2018
, “
Ultra Deep Reactive Ion Etching of High Aspect-Ratio and Thick Silicon Using a Ramped-Parameter Process
,”
J. Microelectromech. Syst.
,
27
(
4
), pp.
686
697
.10.1109/JMEMS.2018.2843722
23.
Sökmen
,
U.
,
Stranz
,
A.
,
Fündling
,
S.
,
Wehmann
,
H. H.
,
Bandalo
,
V.
,
Bora
,
A.
,
Tornow
,
M.
,
Waag
,
A.
, and
Peiner
,
E.
,
2009
, “
Capabilities of ICP-RIE Cryogenic Dry Etching of Silicon: Review of Exemplary Microstructures
,”
J. Micromech. Microeng.
,
19
(
10
), p. 105005.10.1088/0960-1317/19/10/105005
24.
Kim
,
S.-M.
, and
Khang
,
D.-Y.
,
2014
, “
Bulk Micromachining of Si by Metal-Assisted Chemical Etching
,”
Small
,
10
(
18
), pp.
3761
3766
.10.1002/smll.201303379
25.
Li
,
L.
,
Wu
,
J.
, and
Wong
,
C. P.
,
2015
, “
Wafer-Level Wet Etching of High-Aspect-Ratio Through Silicon Vias (TSVs) With High Uniformity and Low Cost for Silicon Interposers With High-Density Interconnect of 3D Packaging
,”
IEEE 65th Electronic Components and Technology Conference
(
ECTC
),
IEEE
, San Diego, CA, May 26–29, pp.
1417
1422
.10.1109/ECTC.2015.7159783
26.
Asano
,
Y.
,
Matsuo
,
K.
,
Ito
,
H.
,
Higuchi
,
K.
,
Shimokawa
,
K.
, and
Sato
,
T.
,
2015
, “
A Novel Wafer Dicing Method Using Metal-Assisted Chemical Etching
,”IEEE 65th Electronic Components and Technology Conference (
ECTC
),
IEEE
, San Diego, CA, May 26–29, pp.
853
858
.10.1109/ECTC.2015.7159692
27.
Li
,
L.
,
Zhang
,
G.
, and
Wong
,
C. P.
,
2015
, “
Formation of Through Silicon Vias for Silicon Interposer in Wafer Level by Metal-Assisted Chemical Etching
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
8
), pp.
1039
1049
.10.1109/TCPMT.2015.2443728
28.
Yan
,
J.
,
Wu
,
S.
,
Zhai
,
X.
,
Gao
,
X.
, and
Li
,
X.
,
2016
, “
Facile Fabrication of Wafer-Scale, Micro-Spacing and High-Aspect-Ratio Silicon Microwire Arrays
,”
RSC Adv.
,
6
(
90
), pp.
87486
87492
.10.1039/C6RA19104E
29.
Cozzi
,
C.
,
Polito
,
G.
,
Kolasinski
,
K. W.
, and
Barillaro
,
G.
,
2017
, “
Controlled Microfabrication of High-Aspect-Ratio Structures in Silicon at the Highest Etching Rates: The Role of H2O2 in the Anodic Dissolution of Silicon in Acidic Electrolytes
,”
Adv. Funct. Mater.
,
27
(
6
), p.
1604310
.10.1002/adfm.201604310
30.
Miao
,
B.
,
Zhang
,
J.
,
Ding
,
X.
,
Wu
,
D.
,
Wu
,
Y.
,
Lu
,
W.
, and
Li
,
J.
,
2017
, “
Improved Metal Assisted Chemical Etching Method for Uniform, Vertical and Deep Silicon Structure
,”
J. Micromech. Microeng.
,
27
(
5
), p. 055019.10.1088/1361-6439/aa6872
31.
Nur'aini
,
A.
, and
Oh
,
I.
,
2022
, “
Deep Etching of Silicon Based on Metal-Assisted Chemical Etching
,”
ACS Omega
,
7
(
19
), pp.
16665
16669
.10.1021/acsomega.2c01113
32.
Wu
,
R. W.
,
Yuan
,
G. D.
,
Wang
,
K. C.
,
Wei
,
T. B.
,
Liu
,
Z. Q.
,
Wang
,
G. H.
,
Wang
,
J. X.
, and
Li
,
J. M.
,
2016
, “
Bilayer–Metal Assisted Chemical Etching of Silicon Microwire Arrays for Photovoltaic Applications
,”
AIP Adv.
,
6
(
2
), p.
025324
.10.1063/1.4943217
33.
Geyer
,
N.
,
Fuhrmann
,
B.
,
Huang
,
Z.
,
de Boor
,
J.
,
Leipner
,
H. S.
, and
Werner
,
P.
,
2012
, “
Model for the Mass Transport During Metal-Assisted Chemical Etching With Contiguous Metal Films as Catalysts
,”
J. Phys. Chem. C
,
116
(
24
), pp.
13446
13451
.10.1021/jp3034227
34.
Michalska
,
M.
,
Laney
,
S. K.
,
Li
,
T.
,
Tiwari
,
M. K.
,
Parkin
,
I. P.
, and
Papakonstantinou
,
I.
,
2022
, “
A Route to Engineered High Aspect-Ratio Silicon Nanostructures Through Regenerative Secondary Mask Lithography
,”
Nanoscale
,
14
(
5
), pp.
1847
1854
.10.1039/D1NR07024J
35.
Morton
,
K. J.
,
Nieberg
,
G.
,
Bai
,
S.
, and
Chou
,
S. Y.
,
2008
, “
Wafer-Scale Patterning of Sub-40 Nm Diameter and High Aspect Ratio (>50:1) Silicon Pillar Arrays by Nanoimprint and Etching
,”
Nanotechnology
,
19
(
34
), p. 345301.10.1088/0957-4484/19/34/345301
36.
Pruessner
,
M. W.
,
Rabinovich
,
W. S.
,
Stievater
,
T. H.
,
Park
,
D.
, and
Baldwin
,
J. W.
,
2007
, “
Cryogenic Etch Process Development for Profile Control of High Aspect-Ratio Submicron Silicon Trenches
,”
J. Vac. Sci. Technol. B Microelectron. Nanometer Struct.-Process., Meas., Phenom.
,
25
(
1
), p.
21
.10.1116/1.2402151
37.
Kim
,
J.
,
Han
,
H.
,
Kim
,
Y. H.
,
Choi
,
S. H.
,
Kim
,
J. C.
, and
Lee
,
W.
,
2011
, “
Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires
,”
ACS Nano
,
5
(
4
), pp.
3222
3229
.10.1021/nn2003458
38.
Kong
,
L.
,
Zhao
,
Y.
,
Dasgupta
,
B.
,
Ren
,
Y.
,
Hippalgaonkar
,
K.
,
Li
,
X.
,
Chim
,
W. K.
, and
Chiam
,
S. Y.
,
2017
, “
Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon Nanohole Array
,”
ACS Appl. Mater. Interfaces
,
9
(
24
), pp.
20981
20990
.10.1021/acsami.7b04565
39.
Akan
,
R.
, and
Vogt
,
U.
,
2021
, “
Optimization of Metal-Assisted Chemical Etching for Deep Silicon Nanostructures
,”
Nanomaterials
,
11
(
11
), p.
2806
.10.3390/nano11112806
40.
Chang
,
S.-W.
,
Chuang
,
V. P.
,
Boles
,
S. T.
,
Ross
,
C. A.
, and
Thompson
,
C. V.
,
2009
, “
Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated Using Block-Copolymer Lithography and Metal-Assisted Etching
,”
Adv. Funct. Mater.
,
19
(
15
), pp.
2495
2500
.10.1002/adfm.200900181
41.
Ho
,
J.-W.
,
Wee
,
Q.
,
Dumond
,
J.
,
Tay
,
A.
, and
Chua
,
S.-J.
,
2013
, “
Versatile Pattern Generation of Periodic, High Aspect Ratio Si Nanostructure Arrays With Sub-50-Nm Resolution on a Wafer Scale
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
506
.10.1186/1556-276X-8-506
42.
Mallavarapu
,
A.
,
Ajay
,
P.
, and
Sreenivasan
,
S. V.
,
2020
, “
Enabling Ultrahigh-Aspect-Ratio Silicon Nanowires Using Precise Experiments for Detecting the Onset of Collapse
,”
Nano Lett.
,
20
(
11
), pp.
7896
7905
.10.1021/acs.nanolett.0c02539
43.
Barrera
,
C.
,
Ajay
,
P.
,
Mallavarapu
,
A.
,
Hrdy
,
M.
, and
Sreenivasan
,
S. V.
,
2022
, “
Metal Assisted Chemical Etch of Polycrystalline Silicon
,”
J. Micro Nano-Manuf.
,
10
(
2
), pp.
1
6
.10.1115/1.4055401
44.
Chartier
,
C.
,
Bastide
,
S.
, and
Lévy-Clément
,
C.
,
2008
, “
Metal-Assisted Chemical Etching of Silicon in HF–H2O2
,”
Electrochim. Acta
,
53
(
17
), pp.
5509
5516
.10.1016/j.electacta.2008.03.009
45.
Kong
,
L.
,
Dasgupta
,
B.
,
Ren
,
Y.
,
Mohseni
,
P. K.
,
Hong
,
M.
,
Li
,
X.
,
Chim
,
W. K.
, and
Chiam
,
S. Y.
,
2016
, “
Evidences for Redox Reaction Driven Charge Transfer and Mass Transport in Metal-Assisted Chemical Etching of Silicon
,”
Sci. Rep.
,
6
(
1
), p.
36582
.10.1038/srep36582
46.
Fang
,
H.
,
Wu
,
Y.
,
Zhao
,
J.
, and
Zhu
,
J.
,
2006
, “
Silver Catalysis in the Fabrication of Silicon Nanowire Arrays
,”
Nanotechnology
,
17
(
15
), pp.
3768
3774
.10.1088/0957-4484/17/15/026
47.
Cherala
,
A.
,
Chopra
,
M.
,
Yin
,
B.
,
Mallavarapu
,
A.
,
Singhal
,
S.
,
Abed
,
O.
,
Bonnecaze
,
R.
, and
Sreenivasan
,
S. V.
,
2016
, “
Nanoshape Imprint Lithography for Fabrication of Nanowire Ultracapacitors
,”
IEEE Trans. Nanotechnol.
,
15
(
3
), pp.
448
456
.10.1109/TNANO.2016.2541859
48.
Mallavarapu
,
A.
,
Gawlik
,
B.
,
Grigas
,
M.
,
Castaneda
,
M.
,
Abed
,
O.
,
Watts
,
M.
, and
Sreenivasan
,
S. V.
,
2020
, “
Scalable Fabrication and Metrology of Silicon Nanowire Arrays Made by Metal Assisted Chemical Etch
,”
IEEE Trans. Nanotechnol.
,
20
, pp.
83
91
.10.1109/TNANO.2020.3047366
49.
Mallavarapu
,
A.
,
Ajay
,
P.
,
Barrera
,
C.
, and
Sreenivasan
,
S. V.
,
2021
, “
Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication
,”
ACS Appl. Mater. Interfaces
,
13
(
1
), pp.
1169
1177
.10.1021/acsami.0c17011
50.
Venkatesan
,
R.
,
Arivalagan
,
M. K.
,
Venkatachalapathy
,
V.
,
Pearce
,
J. M.
, and
Mayandi
,
J.
,
2018
, “
Effects of Silver Catalyst Concentration in Metal Assisted Chemical Etching of Silicon
,”
Mater. Lett.
,
221
, pp.
206
210
.10.1016/j.matlet.2018.03.053
51.
Yae
,
S.
,
Morii
,
Y.
,
Fukumuro
,
N.
, and
Matsuda
,
H.
,
2012
, “
Catalytic Activity of Noble Metals for Metal-Assisted Chemical Etching of Silicon
,”
Nanoscale Res. Lett.
,
7
, pp.
1
5
.10.1186/1556-276X-7-352
52.
Otte
,
M. A.
,
Solis-Tinoco
,
V.
,
Prieto
,
P.
,
Borrisé
,
X.
,
Lechuga
,
L. M.
,
González
,
M. U.
, and
Sepulveda
,
B.
,
2015
, “
Tailored Height Gradients in Vertical Nanowire Arrays Via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching
,”
Small
,
11
(
33
), pp.
4201
4208
.10.1002/smll.201500175
53.
Zhang
,
M. L.
,
Peng
,
K. Q.
,
Fan
,
X.
,
Jie
,
J. S.
,
Zhang
,
R. Q.
,
Lee
,
S. T.
, and
Wong
,
N. B.
,
2008
, “
Preparation of Large-Area Uniform Silicon Nanowires Arrays Through Metal-Assisted Chemical Etching
,”
J. Phys. Chem. C
,
112
(
12
), pp.
4444
4450
.10.1021/jp077053o
54.
Huang
,
Z. P.
,
Geyer
,
N.
,
Liu
,
L. F.
,
Li
,
M. Y.
, and
Zhong
,
P.
,
2010
, “
Metal-Assisted Electrochemical Etching of Silicon
,”
Nanotechnology
,
21
(
46
), p.
465301
.10.1088/0957-4484/21/46/465301
55.
Huff
,
M.
,
2021
, “
Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication
,”
Micromachines
,
12
(
8
), p.
991
.10.3390/mi12080991
56.
Laermer
,
F.
,
Franssila
,
S.
,
Sainiemi
,
L.
, and
Kolari
,
K.
,
2020
, “
Deep Reactive Ion Etching
,”
Handbook of Silicon Based MEMS Materials and Technologies
,
Elsevier
, Amsterdam, The Netherlands, pp.
417
446
.
57.
Vigna
,
B.
,
2022
,
Silicon Sensors and Actuators
,
Springer International Publishing
,
Cham, Switzerland
.
58.
Donnelly
,
V. M.
, and
Kornblit
,
A.
,
2013
, “
Plasma Etching: Yesterday, Today, and Tomorrow
,”
J. Vac. Sci. Technol., A
,
31
(
5
), p.
050825
.10.1116/1.4819316
59.
Dimova-Malinovska
,
D.
,
Sendova-Vassileva
,
M.
,
Tzenov
,
N.
, and
Kamenova
,
M.
,
1997
, “
Preparation of Thin Porous Silicon Layers by Stain Etching
,”
Thin Solid Films
,
297
(
1–2
), pp.
9
12
.10.1016/S0040-6090(96)09434-5
60.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
de Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
.10.1002/adma.201001784
61.
Li
,
X.
, and
Bohn
,
P. W.
,
2000
, “
Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon
,”
Appl. Phys. Lett.
,
77
(
16
), pp.
2572
2574
.10.1063/1.1319191
62.
Jo
,
J. S.
, and
Jang
,
J. W.
,
2021
, “
Optimized Hole Injection, Diffusion, and Consumption for Efficient Metal-Assisted Chemical Etching Depending on the Silicon Doping Type and Metal Catalyst Area
,”
J. Phys. Chem. C
,
125
(
41
), pp.
22713
22723
.10.1021/acs.jpcc.1c04104
63.
Peng
,
K.
,
Zhang
,
M.
,
Lu
,
A.
,
Wong
,
N. B.
,
Zhang
,
R.
, and
Lee
,
S. T.
,
2007
, “
Ordered Silicon Nanowire Arrays Via Nanosphere Lithography and Metal-Induced Etching
,”
Appl. Phys. Lett.
,
90
(
16
), pp.
1
4
.10.1063/1.2724897
64.
Peng
,
K.
,
Lu
,
A.
,
Zhang
,
R.
, and
Lee
,
S. T.
,
2008
, “
Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching
,”
Adv. Funct. Mater.
,
18
(
19
), pp.
3026
3035
.10.1002/adfm.200800371
65.
Huang
,
Z.
,
Shimizu
,
T.
,
Senz
,
S.
,
Zhang
,
Z.
,
Zhang
,
X.
,
Lee
,
W.
,
Geyer
,
N.
, and
Gösele
,
U.
,
2009
, “
Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred 〈100〉 Etching Directions
,”
Nano Lett.
,
9
(
7
), pp.
2519
2525
.10.1021/nl803558n
66.
Kim
,
J. D.
,
Kim
,
M.
,
Kong
,
L.
,
Mohseni
,
P. K.
,
Ranganathan
,
S.
,
Pachamuthu
,
J.
,
Chim
,
W. K.
,
Chiam
,
S. Y.
,
Coleman
,
J. J.
, and
Li
,
X.
,
2018
, “
Self-Anchored Catalyst Interface Enables Ordered Via Array Formation From Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon
,”
ACS Appl. Mater. Interfaces
,
10
(
10
), pp.
9116
9122
.10.1021/acsami.7b17708
67.
Lai
,
C. Q.
,
Cheng
,
H.
,
Choi
,
W. K.
, and
Thompson
,
C. V.
,
2013
, “
Mechanics of Catalyst Motion During Metal Assisted Chemical Etching of Silicon
,”
J. Phys. Chem. C
,
117
(
40
), pp.
20802
20809
.10.1021/jp407561k
68.
Gawlik
,
B.
,
Barr
,
A. R.
,
Mallavarapu
,
A.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2021
, “
Spectral Imaging and Computer Vision for High-Throughput Defect Detection and Root-Cause Analysis of Silicon Nanopillar Arrays
,”
J. Micro Nano-Manuf.
,
9
(
1
), pp.
1
9
.10.1115/1.4049959
69.
Gawlik
,
B.
,
Barrera
,
C.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2020
, “
Hyperspectral Imaging for High-Throughput, Spatially Resolved Spectroscopic Scatterometry of Silicon Nanopillar Arrays
,”
Opt. Express
,
28
(
10
), p.
14209
.10.1364/OE.388158
70.
Gawlik
,
B. M.
,
Cossio
,
G.
,
Kwon
,
H.
,
Jurado
,
Z.
,
Palacios
,
B.
,
Singhal
,
S.
,
Alù
,
A.
,
Yu
,
E. T.
, and
Sreenivasan
,
S. V.
,
2018
, “
Structural Coloration With Hourglass-Shaped Vertical Silicon Nanopillar Arrays
,”
Opt. Express
,
26
(
23
), p.
30952
.10.1364/OE.26.030952
71.
Sreenivasan
,
S. V.
,
2008
, “
Nanoscale Manufacturing Enabled by Imprint Lithography
,”
MRS Bull.
,
33
(
9
), pp.
854
863
.10.1557/mrs2008.181
72.
Lema Galindo
,
R.
,
2021
, “
Integrated Fabrication of Micro- and Nano-Scale Structures for Silicon Devices Enabled by Metal-Assisted Chemical Etch
,” thesis,
University of Texas at Austin, Austin, TX
.
73.
Williams
,
M. O.
,
Hiller
,
D.
,
Bergfeldt
,
T.
, and
Zacharias
,
M.
,
2017
, “
How the Oxidation Stability of Metal Catalysts Defines the Metal-Assisted Chemical Etching of Silicon
,”
J. Phys. Chem. C
,
121
(
17
), pp.
9296
9299
.10.1021/acs.jpcc.6b12362
74.
Hu
,
Y.
,
Jin
,
C.
,
Liu
,
Y.
,
Yang
,
X.
,
Liao
,
Z.
,
Zhang
,
B.
,
Zhou
,
Y.
,
Chen
,
A.
,
Wu
,
L.
,
Liu
,
J.
, and
Peng
,
K.
,
2021
, “
Metal Particle Evolution Behavior During Metal Assisted Chemical Etching of Silicon
,”
ECS J. Solid State Sci. Technol.
,
10
(
8
), p.
084002
.10.1149/2162-8777/ac17be
75.
Li
,
L.
,
Holmes
,
C. M.
,
Hah
,
J.
,
Hildreth
,
O. J.
, and
Wong
,
C. P.
,
2015
, “
Uniform Metal-Assisted Chemical Etching and the Stability of Catalysts
,”
Mater. Res. Soc. Symp. Proc.
,
1801
, pp.
1
8
.10.1557/opl.2015.574
76.
Williams
,
M. O.
,
Jervell
,
A. L. H.
,
Hiller
,
D.
, and
Zacharias
,
M.
,
2018
, “
Using HCl to Control Silver Dissolution in Metal-Assisted Chemical Etching of Silicon
,”
Phys. Status Solidi Appl. Mater. Sci.
,
215
(
18
), p.
1800135
.10.1002/pssa.201800135
77.
Morita
,
M.
,
Ohmi
,
T.
,
Hasegawa
,
E.
,
Kawakami
,
M.
, and
Ohwada
,
M.
,
1990
, “
Growth of Native Oxide on a Silicon Surface
,”
J. Appl. Phys.
,
68
(
3
), pp.
1272
1281
.10.1063/1.347181
78.
Wendisch
,
F. J.
,
Rey
,
M.
,
Vogel
,
N.
, and
Bourret
,
G. R.
,
2020
, “
Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching
,”
Chem. Mater.
,
32
(
21
), pp.
9425
9434
.10.1021/acs.chemmater.0c03593
79.
Hatzakis
,
M.
,
Canavello
,
B. J.
, and
Shaw
,
J. M.
,
1980
, “
Single-Step Optical Lift-Off Process
,”
IBM J. Res. Dev.
,
24
(
4
), pp.
452
460
.10.1147/rd.244.0452
80.
Chandra
,
D.
, and
Yang
,
S.
,
2010
, “
Stability of High-Aspect-Ratio Micropillar Arrays Against Adhesive and Capillary Forces
,”
Acc. Chem. Res.
,
43
(
8
), pp.
1080
1091
.10.1021/ar100001a
81.
Chandra
,
D.
, and
Yang
,
S.
,
2009
, “
Capillary-Force-Induced Clustering of Micropillar Arrays: Is It Caused by Isolated Capillary Bridges or by the Lateral Capillary Meniscus Interaction Force?
,”
Langmuir
,
25
(
18
), pp.
10430
10434
.10.1021/la901722g
82.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C.-Y.
, and
Kim
,
J.
,
2004
, “
Design of Biomimetic Fibrillar Interfaces: 1. Making Contact
,”
J. R. Soc. Interface
,
1
(
1
), pp.
23
33
.10.1098/rsif.2004.0004
You do not currently have access to this content.