Abstract

This paper presents the theory and development, validation, and results of a transient computational multiphysics model for analyzing the magnetic field, particle dynamics, and capture efficiency of magnetic and nonmagnetic (e.g., Red Blood Cells and E. Coli bacteria) microparticles in a traveling wave ferromagnetic microfluidic device. This computational model demonstrates proof-of-concept of a method for greatly enhancing magnetic bioseparation in ferromicrofluidic systems using an array of copper conductive elements arranged in quadrature to create a periodic potential energy landscape. In contrast to previous works, our approach theoretically uses a microfluidic device with an electronic chip platform consisting of integrated copper electrodes that carry currents to generate programable magnetic field gradients locally. Alternating currents are applied to the electrodes in quadrature (using a 90 deg phase change from the neighboring electrode) to create a periodic magnetic field pattern that travels along the length of the microchannel. Our previous work evaluated magnetic and nonmagnetic particles in a static magnetic field within the same channel geometry. This work is a phase 2 study that expands on the previous work and analyzes the dynamics of magnetic and nonmagnetic entities characterized by material magnetic susceptibility in a transient magnetic field. This is an improvement over our previous work. The model, which is described in more detail in the methods section, combines a Eulerian-Lagrangian and two-way particle-fluid coupling CFD analysis with closed-form magnetic field analysis that is used to predict magnetic separation considering dominant magnetic and hydrodynamic forces similar to our previous works in magnetic drug targeting. The model was also validated with an experimental low frequency stationary flow study on separating nonmagnetic latex fluorescent particles in a water based ferrofluid. The results from the experimental study and the developed model demonstrate that the proposed device may potentially be used as an effective platform for microparticle and cellular manipulation and sorting. The developed multiphysics model could potentially be used as a design optimization tool for traveling wave ferromicrofluidic devices.

References

1.
Nabovati
,
G.
,
Ghafar-Zadeh
,
E.
,
Letourneau
,
A.
, and
Sawan
,
M.
,
2017
, “
Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications
,”
IEEE Trans. Biomed. Circuits Syst.
,
11
(
2
), pp.
380
391
.10.1109/TBCAS.2016.2593639
2.
Azizipour
,
N.
,
Avazpour
,
R.
,
Rosenzweig
,
D. H.
,
Sawan
,
M.
, and
Ajji
,
A.
,
2020
, “
Evolution of Biochip Technology: A Review From Lab-on-a-Chip to Organ-on-a-Chip
,”
Micromachines
,
11
(
6
), p.
599
.10.3390/mi11060599
3.
Bakhchova
,
L.
, and
Steinmann
,
U.
,
2022
, “
In-Situ Measurements of the Physiological Parameters in Lab-on-Chip Systems
,”
Tech. Mess.
,
89
(
S1
), pp.
61
65
.10.1515/teme-2022-0063
4.
Agrawal
,
A.
,
Yildiz
,
U. Y.
,
Hussain
,
C. G.
,
Kailasa
,
S. K.
,
Keçili
,
R.
, and
Hussain
,
C. M.
,
2022
, “
Greenness of Lab-on-a-Chip Devices for Analytical Processes: Advanced & Future Prospects
,”
J. Pharm. Biomed. Anal.
,
219
, p.
114914
.10.1016/j.jpba.2022.114914
5.
Catini
,
A.
,
Capuano
,
R.
,
Tancredi
,
G.
,
Dionisi
,
G.
,
Di Giuseppe
,
D.
,
Filippi
,
J.
,
Martinelli
,
E.
, and
Di Natale
,
C.
,
2022
, “
A Lab-on-a-Chip Based Automatic Platform for Continuous Nitrites Sensing in Aquaculture
,”
Sensors
,
22
(
2
), p.
444
.10.3390/s22020444
6.
Zhang
,
H. Y.
,
Rong
,
G. G.
,
Bian
,
S. M.
, and
Sawan
,
M.
,
2022
, “
Lab-on-Chip Microsystems for Ex Vivo Network of Neurons Studies: A Review
,”
Front. Bioeng. Biotechnol.
,
10
, p. 841389.10.3389/fbioe.2022.841389
7.
Menachery
,
A.
, and
Pethig
,
P.
,
2005
, “
Controlling Cell Destruction Using Dielectrophoretic Forces
,”
NanoBiotechnology
,
152
(
4
), pp.
145
149
.10.1049/ip-nbt:20050010
8.
Muller
,
T.
,
Pfennig
,
A.
,
Klein
,
P.
,
Gradl
,
G.
,
Jager
,
M.
, and
Schnelle
,
T.
,
2003
, “
The Potential of Dielectrophoresis for Single-Cell Experiments
,”
IEEE Eng. Biol. Med. Mag.
,
22
(
6
), pp.
51
61
.10.1109/MEMB.2003.1266047
9.
Russo
,
G. I.
,
Musso
,
N.
,
Romano
,
A.
,
Caruso
,
G.
,
Petralia
,
S.
,
Lanzanò
,
L.
,
Broggi
,
G.
, and
Camarda
,
M.
,
2021
, “
The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis
,”
Cancers
,
14
(
1
), p.
198
.10.3390/cancers14010198
10.
Sebastian
,
A.
,
Buckle
,
A. M.
, and
Markx
,
G. H.
,
2006
, “
Formation of Multilayer Aggrefates of Mammalian Cells by Dielectrophoresis
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
1769
1777
.10.1088/0960-1317/16/9/003
11.
Gijs
,
M. A. M.
,
2004
, “
Magnetic Bead Handling on-Chip: New Opportunities for Analytical Applications
,”
Microfluid. Nanofluid.
,
1
, pp.
22
40
.10.1007/s10404-004-0010-y
12.
Davis
,
J. A.
,
Inglis
,
D. W.
,
Morton
,
K. J.
,
Lawrence
,
D. A.
,
Huang
,
L. R.
,
Chou
,
S. Y.
,
Sturm
,
J. C.
, and
Austin
,
R. H.
,
2006
, “
Deterministic Hydrodyanmics: Taking Blood Apart
,”
Proc Natl Acad Sci U. S. A.
,
103
(
40
), pp.
14779
14784
.10.1073/pnas.0605967103
13.
Kose
,
A. R.
,
Fischer
,
B.
,
Mao
,
L.
, and
Koser
,
H.
,
2009
, “
Label-Free Cellular Manipulation and Sorting Via Biocompatible Ferrofluids
,”
Appl. Biol. Sci.
,
106
(
51
), pp.
21478
21483
.10.1073/pnas.0912138106
14.
Kose
,
A. R.
,
Fischer
,
B.
, and
Koser
,
H.
,
2008
, “
Towards Ferro-Microfluidics for Effective and Rapid Cellular Manipulation and Sorting
,”
3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Sanya, China, Jan. 6–9, pp.
903
906
.10.1109/NEMS.2008.4484469
15.
Fischer
,
B.
,
Kose
,
A.
,
Gungormus
,
M.
,
Sarikara
,
M.
,
Tamerler
,
C.
, and
Koser
,
H.
,
2009
, “
Bioferrofluidics for Raid, Labor-Free, and Cost-Effective Detection and Diagnostics
,”
Abstracts of Papers the American Chemistry Society
,
American Chemical Society
,
Washington, DC
, p.
237
.
16.
Kashevsky
,
B. E.
,
1997
, “
Nonmagnetic Particles in Magnetic Fluid: Reversal Dynamics Under Rotating Fields
,”
Phys Fluids
,
9
(
6
), pp.
1811
1818
.10.1063/1.869296
17.
Rosensweig
,
R. E.
,
1997
,
Ferrohydrodynamics
,
Dover
,
New York
.
18.
Odenback
,
S.
,
2002
,
Magnetically Controllable Fluids and Their Applications
,
Springer
,
New York
.
19.
Yellen
,
B. B.
,
Hovorka
,
O.
, and
Friedman
,
G.
,
2005
, “
Arranging Matter by Magnetic Nanoparticle Assemblers
,”
Proc. Natl. Acad. Sci U. S. A.
,
102
(
25
), pp.
8860
8864
.10.1073/pnas.0500409102
20.
Yellen
,
B. B.
,
Erb
,
R. M.
,
Son
,
H. S.
,
Hewlin
, Jr.
,
R. L.
,
Shang
,
H.
, and
Lee
,
G. U.
,
2007
, “
Travelling Wave Magnetophoresis for High Resolution Chip Based Separations
,”
Lab a Chip
,
7
(
12
), pp.
1681
1688
.10.1039/b713547e
21.
Volmer
,
M.
,
Avram
,
M.
, and
Avram
,
A. M.
,
2015
, “
Detection of Magnetic Nanoparticles for Lab-on-a Chip Applications
,”
Romainian J. Inf. Sci. Technol.
,
18
(
4
), pp.
343
355
.https://www.romjist.ro/content/pdf/04-volmer.pdf
22.
Edwards
,
M.
, and
Hewlin
,
R. L.
, Jr. ,
2022
, “
A Computational Model for Analysis of Field Force and Particle Dynamics in a Ferro-Magentic Microfluidic System
,”
ASME
Paper No. IMECE2022-95690.10.1115/IMECE2022-95690
23.
Khashan
,
S. A.
,
Alazzam
,
A.
, and
Furlani
,
E. P.
,
2014
, “
Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems With Flow-Invasive Magnetic Elements
,”
Sci. Rep.
,
4
(
1
), p.
5299
.10.1038/srep05299
24.
Ruan
,
J.
,
Zhang
,
W.
,
Zhang
,
C.
,
Li
,
N.
,
Jian
,
J.
, and
Huilan
,
S.
,
2022
, “
A Magnetophoretic Microdevice for Multi-Magnetic Particles Separation Based on Size: A Numerical Simulation Study
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
1781
1795
.10.1080/19942060.2022.2109064
25.
Chong
,
P. H.
,
Tan
,
Y. W.
,
Teoh
,
Y. P.
,
Lim
,
C. H.
,
Toh
,
P. Y.
,
Lim
,
J.
, and
Leong
,
S. S.
,
2021
, “
Continuous Flow Low Gradient Magnetophoresis of Magnetic Nanoparticles: Separation Kinetic Modelling and Simulation
,”
J. Supercond. Novel Magn.
,
34
(
8
), pp.
2151
2165
.10.1007/s10948-021-05893-z
26.
Hewlin
,
R. L.
, Jr.
, and
Tindall
,
J. M.
,
2023
, “
Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model
,”
Int. J. Mol. Sci
,
24
(
3
), p.
2545
.10.3390/ijms24032545
27.
Hewlin
,
J. R. L.
,
Ciero
,
A.
, and
Kizito
,
J. P.
,
2019
, “
Development of a Two-Way Coupled Eulerian–Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery
,”
J. Cardiovasc. Eng. Technol.
,
10
(
2
), pp.
299
313
.10.1007/s13239-019-00411-8
28.
Hewlin
,
J.
,
Smith
,
M. S.
, and
Kizito
,
J. P.
,
2022
, “
Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery
,”
J. Cardiovasc. Eng. Technol.
, epub.
29.
Jones
,
T.
,
1995
,
Electromechanics of Particles
,
Cambridge University Press
, Cambridge, UK.
30.
Hewlin
,
R. L.
, Jr.
, and
Kizito
,
J. P.
,
2013
, “
Comparison of Carotid Bifurcation Hemodynamics in Patient-Specific Geometries at Rest and During Exercise
,”
ASME
Paper No. V01AT04A001.10.1115/V01AT04A001
31.
Hewlin
,
R. L.
, Jr.
, and
Kizito
,
J. P.
,
2010
, “
Evaluation of the Effect of Simplified and Patient-Specific Arterial Geometry on Hemodynamic Flow in Stenosed Carotid Bifurcation Arteries
,”
Early Career Tech. J.
,
10
, pp.
39
44
.
32.
COMSOL,
2022
, “
COMSOL MultiPhysics Reference Manual
,” accessed Dec. 14, 2022, https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf
33.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
34.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
35.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Brownian Diffusion of Submicrometer Particles in Viscous Sublayer
,”
J. Colloid Interface Sci.
,
143
(
1
), pp.
266
277
.10.1016/0021-9797(91)90458-K
36.
Verwey
,
E. J. W.
,
1947
, “
Theory of Stability of Lyophobic Colloids
,”
J. Phys. Chem.
,
51
(
3
), pp.
631
636
.10.1021/j150453a001
37.
López-Ortega
,
A.
,
Lottini
,
E.
,
Fernández
,
C. D. J.
, and
Sangregorio
,
C.
,
2015
, “
Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet
,”
Chem. Mater.
,
27
(
11
), pp.
4048
4056
.10.1021/acs.chemmater.5b01034
38.
Maaz
,
K.
,
Mumtaz
,
A.
,
Hasanain
,
S. K.
, and
Ceylan
,
A.
,
2007
, “
Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route
,”
J. Magn. Magn. Mater.
,
308
(
2
), pp.
289
295
.10.1016/j.jmmm.2006.06.003
39.
Cheng
,
C.
,
Dai
,
J.
,
Li
,
Z.
, and
Feng
,
W.
,
2020
, “
Preparation and Magnetic Properties of CoFe2O4 Oriented Fiber Arrays by Electrospinning
,”
Materials
,
13
(
17
), p.
3860
.10.3390/ma13173860
40.
Tsang
,
E.
, and
Morris
,
J.
,
1985
, “
Magnetic Susceptibility of Escherichia Coli
,”
J. Magn. Magn. Mater.
,
51
(
1–3
), pp.
355
358
.10.1016/0304-8853(85)90035-6
41.
Zborowski
,
M.
,
Ostera
,
G. R.
,
Moore
,
L. R.
,
Milliron
,
S.
,
Chalmer
,
J. J.
, and
Schechter
,
A. N.
,
2003
, “
Red Blood Cell Magnetophoresis
,”
Biophys. J.
,
84
(
4
), pp.
2638
2645
.10.1016/S0006-3495(03)75069-3
42.
Spees
,
W. M.
,
Yablonskiy
,
D. A.
,
Oswood
,
M. C.
, and
Ackerman
,
J. J. H.
,
2001
, “
Water Proton MR Properties of Human Blood at 1.5 Tesla: Magnetic Susceptibility, T1, T2, T2*, and Non-Lorentzian Signal Behavior
,”
Magn. Reson. Med.
,
45
(
4
), pp.
533
542
.10.1002/mrm.1072
43.
Cerdonio
,
M.
,
Congiu-Castellano
,
A.
,
Calabrese
,
L.
,
Morante
,
S.
,
Pispisa
,
B.
, and
Vitale
,
S.
,
1978
, “
Room-Temperature Magnetic Properties of Oxy-and Carbonmonoxyhemoglobin
,”
Proc. Natl. Acad. Sci. USA
,
75
(
10
), pp.
4916
4919
.10.1073/pnas.75.10.4916
44.
Cerdonio
,
M.
,
Morante
,
S.
,
Torresani
,
D.
,
Vitale
,
S.
,
DeYoung
,
A.
, and
Noble
,
R. W.
,
1985
, “
Reexamination of the Evidence for Paramagnetism in Oxy- and Carbonmonoxyhemoglobins
,”
Proc. Natl. Acad. Sci. USA
,
82
(
1
), pp.
102
103
.10.1073/pnas.82.1.102
45.
Kuchel
,
P. W.
,
Cox
,
C. D.
,
Daners
,
D.
,
Shishmarev
,
D.
, and
Galvosas
,
P.
,
2021
, “
Surface Model of Human Red Blood Cell Simulating Changes in Membrane Curvature Under Strain
,”
Sci. Rep.
,
11
(
1
), p. 13712.10.1038/s41598-021-92699-7
46.
Jahangir
,
A. S.
,
Hu
,
G. Q.
, and
Yu
,
L. K.
,
2013
, “
Simulation of Red Particles in Blood Cell
,”
Appl. Mech. Mater.
,
477–478
, pp.
330
334
.10.4028/www.scientific.net/AMM.477-478.330
47.
Nahavandi
,
M.
,
2016
, “
Continuous-Flow Separation of Malaria-Infected Human Erthrocytes Using DC Dielectrophoresis: An Electrokinetic Modeling and Simulation
,”
Ind. Eng. Chem. Res.
,
55
(
19
), pp.
5484
5499
.10.1021/acs.iecr.6b00660
48.
Kumar
,
C. L.
,
Juliet
,
A. V.
,
Ramakrishna
,
B.
,
Chakraborty
,
S.
,
Mohammed
,
M. A.
, and
Sunny
,
K. A.
,
2021
, “
Computational Microfluidic Channel for Separation of Escherichia Coli From Blood-Cells
,”
CMC-Comput. Mater. Continua
,
67
(
2
), pp.
1369
1384
.10.32604/cmc.2021.015116
49.
Karampelas
,
I. H.
, and
Gomez-Pastora
,
J.
,
2022
, “
Novel Approaches Concerning the Numerical Modeling of Particle and Cell Separation in Microchannels: A Review
,”
Processes
,
10
(
6
), p.
1226
.10.3390/pr10061226
50.
Stanley
,
N.
,
Ciero
,
A.
,
Timms
,
W.
, and
Hewlin
,
R. L.
, Jr.
,
2023
, “
A 3D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow
,”
ASME Open J. Eng.
,
2023
(
2
), p.
021010
.10.1115/1.4056639
51.
Hewlin
,
R. L.
, Jr.
, and
Kizito
,
J. P.
,
2018
, “
Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "a Preliminary Framework Analysis
,”
Cardiovasc. Eng. Tech.
,
9
(
1
), pp.
1
31
.10.1007/s13239-017-0332-z
52.
Hewlin
,
R. L.
, Jr.
,
2015
, “
Transient Cardiovascular Hemodynamics in a Patient-Specific Arterial System
,” Electronic theses and dissertations, North Carolina Agricultural and Technical State University, Greensboro, NC.https://digital.library.ncat.edu/cgi/viewcontent.cgi?article=1098&context=dissertations
53.
Hewlin
,
R. L.
, Jr.
,
Edwards
,
M.
, and
Schultz
,
C.
,
2023
, “
Design and Development of a Travelling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid
,”
Micromachines
,
14
(
4
), p.
889
.10.3390/mi14040889
54.
Crooks
,
J. M.
,
Hewlin
,
R. L.
, Jr.
, and
Williams
,
W. B.
,
2022
, “
Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study
,”
Energies
,
15
(
23
), p.
8942
.10.3390/en15238942
55.
Stanley
,
N.
,
Ciero
,
A.
,
Timms
,
W.
, and
Hewlin
,
R. L.
,
2019
, “
Development of 3D Printed Optically Clear Rigid Anatomical Vessels for Particle Image Velocimetry Analysis in Cardiovascular Flow
,”
ASME
Paper No. IMECE2019-11649.10.1115/IMECE2019-11649
56.
Su
,
P.
,
Ren
,
C. H.
,
Fu
,
Y. S.
,
Guo
,
J.
,
Guo
,
J.
, and
Yuan
,
Q.
,
2021
, “
Magnetophoresis in Microfluidic Lab: Recent Advance
,”
Sens. Actuators A-Phys.
,
2021
.
332 Part
(
2
), p.
113180
.10.1016/j.sna.2021.113180
You do not currently have access to this content.