Abstract

Spine degeneration is a normal aging process. It may lead to stenotic spines that may have implications for pain and quality of life. The diagnosis is based on clinical symptomatology and imaging. Magnetic resonance images often reveal the nature and degree of stenosis of the spine. Stenosis is concerning to clinicians and patients because of the decreased space in the spinal canal and potential for elevated risk of cord and/or osteoligamentous spinal column injuries. Numerous finite element models of the cervical spine have been developed to study the biomechanics of the osteoligamentous column such as range of motion and vertebral stress; however, spinal cord modeling is often ignored. The objective of this study was to determine the external column and internal cord and disc responses of stenotic spines using finite element modeling. A validated model of the subaxial spinal column was used. The osteoligamentous column was modified to include the spinal cord. Mild, moderate, and severe degrees of stenosis commonly identified in civilian populations were simulated at C5–C6. The column-cord model was subjected to postero-anterior acceleration at T1. The range of motion, disc pressure, and cord stress–strain were obtained at the index and superior and inferior adjacent levels of the stenosis. The external metric representing the segmental motion was insensitive while the intrinsic disc and cord variables were more sensitive, and the index level was more affected by stenosis. These findings may influence surgical planning and patient education in personalized medicine.

References

1.
Cusick
,
J. F.
, and
Yoganandan
,
N.
,
2002
, “
Biomechanics of the Cervical Spine 4: Major Injuries
,”
Clin. Biomech.
,
17
(
1
), pp.
1
20
.10.1016/S0268-0033(01)00101-2
2.
White
,
A. A.
, and
Panjabi
,
M. M.
,
1990
,
Clinical Biomechanics of the Spine
,
JB Lippincott
,
Philadelphia, PA
.
3.
Bogduk
,
N.
, and
Yoganandan
,
N.
,
2001
, “
Biomechanics of Minor Injuries to the Cervical Spine
,”
Clin. Biomech.
,
16
(
4
), pp.
267
275
.10.1016/S0268-0033(01)00003-1
4.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2001
, “
Biomechanics of the Cervical Spine Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling
,”
Clin. Biomech.
,
16
(
1
), pp.
1
27
.10.1016/S0268-0033(00)00074-7
5.
Myklebust
,
J. B.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D.
,
Myers
,
T. J.
, and
Sances
,
A.
, Jr.
,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
(
5
), pp.
528
531
.10.1097/00007632-198805000-00016
6.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.10.1115/1.1322034
7.
Yoganandan
,
N.
,
Pintar
,
F.
,
Butler
,
J.
,
Reinartz
,
J.
,
Sances
,
A.
, Jr.
, and
Larson
,
S. J.
,
1989
, “
Dynamic Response of Human Cervical Spine Ligaments
,”
Spine
,
14
(
10
), pp.
1102
1110
.10.1097/00007632-198910000-00013
8.
NIghtingale
,
R. H.
, and
Yoganandan
,
N.
,
2015
, “
Neck Injury Biomechanics
,”
Accidental Injury: Biomechanics and Prevention
,
N.
Yoganandan
,
A. M.
Nahum
, and
J. W.
Melvin
, eds.,
Springer
,
New York
, pp.
292
343
.
9.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Voo
,
L. M.
,
Cusick
,
J. F.
, and
Larson
,
S. J.
,
1997
, “
Finite Element Modeling of Cervical Laminectomy With Graded Facetectomy
,”
J. Spinal Disord.
,
10
(
1
), pp.
40
46
.https://pubmed.ncbi.nlm.nih.gov/9041495/
10.
Maiman
,
D. J.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Biomechanical Effect of Anterior Cervical Spine Fusion on Adjacent Segments
,”
Biomed. Mater. Eng.
,
9
(
1
), pp.
27
38
.https://pubmed.ncbi.nlm.nih.gov/10436851/#:~:text=The%20increased%20internal%20stress%20responses,enhanced%20degeneration%20subsequent%20to%20surgery
11.
Voo
,
L. M.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Cusick
,
J. F.
,
1997
, “
Finite Element Analysis of Cervical Facetectomy
,”
Spine
,
22
(
9
), pp.
964
969
.10.1097/00007632-199705010-00006
12.
Yoganandan
,
N.
,
Purushothaman
,
Y.
,
Choi
,
H.
,
Jebaseelan
,
D.
, and
Baisden
,
J.
,
2021
, “
Biomechanical Effects of Uncinate Process Excision in Cervical Disc Arthroplasty
,”
Clin. Biomech.
,
89
, p.
105451
.10.1016/j.clinbiomech.2021.105451
13.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
(
15
), pp.
1824
1834
.10.1097/00007632-199608010-00022
14.
Alvin
,
M. D.
,
Abbott
,
E. E.
,
Lubelski
,
D.
,
Kuhns
,
B.
,
Nowacki
,
A. S.
,
Steinmetz
,
M. P.
,
Benzel
,
E. C.
, and
Mroz
,
T. E.
,
2014
, “
Cervical Arthroplasty: A Critical Review of the Literature
,”
Spine J.
,
14
(
9
), pp.
2231
2245
.10.1016/j.spinee.2014.03.047
15.
Choi
,
H.
,
Baisden
,
J. L.
, and
Yoganandan
,
N.
,
2019
, “
A Comparative In Vivo Study of Semi-Constrained and Unconstrained Cervical Artificial Disc Prostheses
,”
Mil. Med.
,
184
(
Suppl_1
), pp.
637
643
.10.1093/milmed/usy395
16.
Choi
,
H.
,
Purushothaman
,
Y.
,
Baisden
,
J.
, and
Yoganandan
,
N.
,
2020
, “
Unique Biomechanical Signatures of Bryan, Prodisc C, and Prestige LP Cervical Disc Replacements: A Finite Element Modelling Study
,”
Eur. Spine J.
,
29
(
11
), pp.
2631
2639
.10.1007/s00586-019-06113-y
17.
Purushothaman
,
Y.
,
Yoganandan
,
N.
,
Jebaseelan
,
D.
,
Choi
,
H.
, and
Baisden
,
J.
,
2020
, “
External and Internal Responses of Cervical Disc Arthroplasty and Anterior Cervical Discectomy and Fusion: A Finite Element Modeling Study
,”
J. Mech. Behav. Biomed. Mater.
,
106
, p.
103735
.10.1016/j.jmbbm.2020.103735
18.
Buckwalter
,
J.
,
1995
, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
,
20
(
11
), pp.
1307
1314
.10.1097/00007632-199506000-00022
19.
John
,
J.
,
Arun
,
M.
,
Yoganandan
,
N.
,
Kurpad
,
S.
, and
Gurunathan
,
S. K.
,
2017
, “
Mapping Block-Based Morphing for Subject-Specific Spine Finite Element Models
,”
54th Annual Rocky Mountain Bioengineering Symposium
, Denver, CO, Mar. 31–Apr. 1.https://www.researchgate.net/publication/325644961_Mapping_Blockbased_Morphing_for_Subject-Specific_Spine_Finite_Element_Models
20.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
21.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.10.1016/S0021-9290(98)00046-3
22.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.10.1016/S0021-9290(98)00057-8
23.
Mattucci
,
S. F.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.10.1016/j.jmbbm.2012.02.004
24.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4-C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
25.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.10.1016/0021-9290(75)90075-5
26.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
, Williams and Wilkins,
Baltimore, MD
.
27.
Bilston
,
L. E.
, and
Thibault
,
L. E.
,
1995
, “
The Mechanical Properties of the Human Cervical Spinal cordin Vitro
,”
Ann. Biomed. Eng.
,
24
(
S1
), pp.
67
74
.10.1007/BF02770996
28.
Greaves
,
C. Y.
,
Gadala
,
M. S.
, and
Oxland
,
T. R.
,
2008
, “
A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms
,”
Ann. Biomed. Eng.
,
36
(
3
), pp.
396
405
.10.1007/s10439-008-9440-0
29.
Léo
,
F.
,
Pierre-Jean
,
A.
,
Virginie
,
C.
, and
Yvan
,
P.
,
2016
, “
Geometrical Variations in White and Gray Matter Affect the Biomechanics of Spinal Cord Injuries More Than the Arachnoid Space
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
8
.10.1177/1687814016664703
30.
Persson
,
C.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2011
, “
The Importance of Fluid-Structure Interaction in Spinal Trauma Models
,”
J. Neurotrauma
,
28
(
1
), pp.
113
125
.10.1089/neu.2010.1332
31.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
32.
Patel
,
V. V.
,
Wuthrich
,
Z. R.
,
McGilvray
,
K. C.
,
Lafleur
,
M. C.
,
Lindley
,
E. M.
,
Sun
,
D.
, and
Puttlitz
,
C. M.
,
2017
, “
Cervical Facet Force Analysis After Disc Replacement Versus Fusion
,”
Clin. Biomech.
,
44
, pp.
52
58
.10.1016/j.clinbiomech.2017.03.007
33.
Barrey
,
C.
,
Rousseau
,
M. A.
,
Persohn
,
S.
,
Campana
,
S.
,
Perrin
,
G.
, and
Skalli
,
W.
,
2015
, “
Relevance of Using a Compressive Preload in the Cervical Spine: An Experimental and Numerical Simulating Investigation
,”
Eur. J. Orthop. Surg. Traumatol.
,
25
(
Suppl S1
), pp.
155
165
.10.1007/s00590-015-1625-2
34.
Dvorak
,
J.
,
Panjabi
,
M. M.
,
Novotny
,
J. E.
, and
Antinnes
,
J. A.
,
1991
, “
In Vivo Flexion/Extension of the Normal Cervical Spine
,”
J. Orthop. Res.
,
9
(
6
), pp.
828
834
.10.1002/jor.1100090608
35.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2003
, “
Gender Dependent Cervical Spine Segmental Kinematics During Whiplash
,”
J. Biomech.
,
36
(
9
), pp.
1281
1289
.10.1016/S0021-9290(03)00159-3
36.
Panjabi
,
M. M.
,
Ivancic
,
P. C.
,
Tominaga
,
Y.
, and
Wang
,
J. L.
,
2005
, “
Intervertebral Neck Injury Criterion for Prediction of Multiplanar Cervical Spine Injury Due to Side Impacts
,”
Traffic Inj. Prev.
,
6
(
4
), pp.
387
397
.10.1080/15389580500257100
37.
Kang
,
Y. S.
,
Moorhouse
,
K.
,
Herriott
,
R.
, and
Bolte
,
J. H. T.
,
2013
, “
Comparison of Cervical Vertebrae Rotations for PMHS and BioRID II in Rear Impacts
,”
Traffic Inj. Prev.
,
14
(
sup1
), pp.
S136
S147
.10.1080/15389588.2013.799280
38.
Ivancic
,
P. C.
,
Panjabi
,
M. M.
,
Ito
,
S.
,
Cripton
,
P. A.
, and
Wang
,
J. L.
,
2005
, “
Biofidelic Whole Cervical Spine Model With Muscle Force Replication for Whiplash Simulation
,”
Eur. Spine J.
,
14
(
4
), pp.
346
355
.10.1007/s00586-004-0758-5
39.
Bell
,
K. M.
,
Yan
,
Y.
,
Hartman
,
R. A.
, and
Lee
,
J. Y.
,
2018
, “
Influence of Follower Load Application on Moment-Rotation Parameters and Intradiscal Pressure in the Cervical Spine
,”
J. Biomech.
,
76
, pp.
167
172
.10.1016/j.jbiomech.2018.05.031
40.
Kim
,
S.
,
Lee
,
J. W.
,
Chai
,
J. W.
,
Yoo
,
H. J.
,
Kang
,
Y.
,
Seo
,
J.
,
Ahn
,
J. M.
, and
Kang
,
H. S.
,
2015
, “
A New MRI Grading System for Cervical Foraminal Stenosis Based on Axial T2-Weighted Images
,”
Korean J. Radiol.
,
16
(
6
), pp.
1294
1302
.10.3348/kjr.2015.16.6.1294
41.
Kang
,
Y.
,
Lee
,
J. W.
,
Koh
,
Y. H.
,
Hur
,
S.
,
Kim
,
S. J.
,
Chai
,
J. W.
, and
Kang
,
H. S.
,
2011
, “
New MRI Grading System for the Cervical Canal Stenosis
,”
Am. J. Roentgenol.
,
197
(
1
), pp.
W134
W140
.10.2214/AJR.10.5560
42.
Muhle
,
C.
,
Metzner
,
J.
,
Weinert
,
D.
,
Falliner
,
A.
,
Brinkmann
,
G.
,
Mehdorn
,
M. H.
,
Heller
,
M.
, and
Resnick
,
D.
,
1998
, “
Classification System Based on Kinematic MR Imaging in Cervical Spondylitic Myelopathy
,”
AJNR Am. J. Neuroradiol.
,
19
(
9
), pp.
1763
1771
.https://pubmed.ncbi.nlm.nih.gov/9802503/
43.
Seo
,
J.
, and
Lee
,
J. W.
,
2023
, “
Magnetic Resonance Imaging Grading Systems for Central Canal and Neural Foraminal Stenoses of the Lumbar and Cervical Spines With a Focus on the Lee Grading System
,”
Korean J. Radiol.
,
24
(
3
), pp.
224
234
.10.3348/kjr.2022.0351
44.
Denis
,
F.
,
1983
, “
The Three Column Spine and Its Significance in the Classification of Acute Thoracolumbar Spinal Injuries
,”
Spine
,
8
(
8
), pp.
817
831
.10.1097/00007632-198311000-00003
You do not currently have access to this content.