Despite revolutionary advances in many fields of medicine, there are no active mobile in vivo devices commercially available, or in use, today. Several research groups are actively looking at a number of mobility methods in a number of lumens but little commercial work has been done. While robotic surgery is available today, thanks to ex vivo robots, such as the da Vinci surgical system, these methods are very expensive, require heavy external equipment, and are still constrained by entry incisions. An alternative approach may be to place the robot completely inside the patient. Such devices may enable noninvasive imaging and diagnostics. These devices may be significantly less expensive than current minimally invasive methods, without extensive support equipment, which may allow them to be also used routinely in the emergency room (ER)/trauma sites and remote locations. This work explores micropatterned treads that may enable mobile capsule crawlers inside the body. Current research efforts into providing contact locomotion using micro-tread tracks are explored including initial drawbar force generation experimental results, dynamic finite element analysis with these tread designs, and in vivo porcine evaluation and comparison of two leading tread designs.

1.
Dakin
,
G. F.
, and
Gagner
,
M.
, 2003, “
Comparison of Laparoscopic Skills Performance Between Standard Instruments and Two Surgical Robotic Systems
,”
Surg. Endosc
0930-2794,
17
(
4
), pp.
574
579
.
2.
Nio
,
D.
,
Bemelman
,
W. A.
,
Boer
,
K. T.
,
Dunker
,
M. S.
,
Gouma
,
D. J.
, and
Gulik
,
T. M.
, 2002, “
Efficiency of Manual Versus Robotical (Zeus) Assisted Laparoscopic Surgery in the Performance of Standardized Tasks
,”
Surg. Endosc
0930-2794,
16
(
3
), pp.
412
415
.
3.
Çavusoglu
,
M. C.
,
Williams
,
W.
,
Tendick
,
F.
, and
Sastry
,
S. S.
, 2003, “
Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications
,”
Ind. Robot
0143-991X,
30
(
1
), pp.
22
29
.
4.
Cavusoglu
,
M. C.
,
Tendick
,
F.
, and
Sastry
,
S. S.
, 2001, “
Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments
,”
Touch in Virtual Environments
(
IMSC Series in Multimedia
),
Prentice Hall
,
Upper Saddle River, NJ
.
5.
Ang
,
W.
, 2004, “
Active Tremor Compensation in Handheld Instrument for Microsurgery
,” Carnegie Mellon University, Pittsburgh, PA, Technical Report No. SMU-RI-TR-04-28.
6.
Riviere
,
C.
,
Ang
,
W.
, and
Khosla
,
P.
, 2003, “
Toward Active Tremor Canceling in Handheld Microsurgical Instruments
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
5
), pp.
793
800
.
7.
Rosen
,
J.
,
Lum
,
M.
,
Trimble
,
D.
,
Hannaford
,
B.
, and
Sinanan
,
M.
, 2005, “
Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches
,”
Stud. Health Technol. Inform.
0926-9630,
111
(
1
), pp.
422
428
.
8.
Miller
,
A.
,
Allen
,
P.
, and
Fowler
,
D.
, 2004, “
In Vivo Stereoscopic Imaging System With 5 Degrees-of-Freedom for Minimal Access Surgery
,”
Stud. Health Technol. Inform.
0926-9630,
12
(
1
), pp.
234
240
.
9.
Hu
,
T.
,
Allen
,
P. K.
, and
Fowler
,
D. L.
, 2008, “
In Vivo Pan/Tilt Endoscope With Integrated Light Source
,”
Stud. Health Technol. Inform.
0926-9630,
132
(
1
), pp.
174
179
.
10.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C.
, 2005, “
Preliminary Evaluation of a Mobile Robotic Device for Navigation and Intervention on the Beating Heart
,”
Comput. Aided Surg.
1092-9088,
10
(
4
), pp.
225
232
.
11.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C.
, 2004, “
Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions
,”
MICCAI
, Vol.
3217
, pp.
9
16
.
12.
Rentschler
,
M. E.
,
Farritor
,
S. M.
, and
Iagnemma
,
K. D.
, 2007, “
Mechanical Design of Robotic In Vivo Wheeled Mobility
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1037
1145
.
13.
Rentschler
,
M.
,
Hadzialic
,
A.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Farritor
,
S.
, and
Oleynikov
,
D.
, 2004, “
In Vivo Robots for Laparoscopic Surgery
,”
Stud. Health Technol. Inform.
0926-9630,
98
, pp.
316
322
.
14.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Farritor
,
S.
, and
Oleynikov
,
D.
, 2006, “
Mobile In Vivo Robots Can Assist in Abdominal Exploration
,”
Surg. Endosc
0930-2794,
20
(
1
), pp.
135
138
.
15.
Rentschler
,
M. E.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Iagnemma
,
K.
,
Oleynikov
,
D.
, and
Farritor
,
S. M.
, 2007, “
An In Vivo Mobile Robot for Surgical Vision and Task Assistance
,”
ASME J. Med. Devices
1932-6181,
1
, pp.
23
29
.
16.
Fukuda
,
T.
,
Guo
,
S.
,
Kosuge
,
K.
,
Arai
,
F.
,
Negoro
,
M.
, and
Nakabayashi
,
K.
, 1994, “
Micro Active Catheter System With Multi Degrees of Freedom
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Diego, CA, Vol.
3
, pp.
2290
2295
.
17.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
, 1991, “
Development of Flexible Microactuator and Its Applications to Robotics Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Sacramento, CA, Vol.
2
, pp.
1622
1627
.
18.
Phee
,
L.
,
Accoto
,
D.
,
Menciassi
,
A.
,
Stefanini
,
C.
,
Carrozza
,
M.
, and
Dario
,
P.
, 2002, “
Analysis and Development of Locomotion Devices for the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
(
6
), pp.
613
616
.
19.
Flynn
,
A. M.
,
Udayakumar
,
K. R.
,
Barret
,
D. S.
,
McLurkin
,
J. D.
,
Franck
,
D. L.
, and
Shectman
,
A. N.
, 1998, “
Tomorrow’s Surgery: Micromotors and Microrobots for Minimally Invasive Procedures
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
7
(
4
), pp.
343
352
.
20.
Breedveld
,
P.
,
Danielle
,
E.
, and
Van Gorp
,
M.
, 2004, “
Locomotion Through the Intestine by Means of Rolling Stents
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Salt Lake City, UT.
21.
Kim
,
Y. T.
, and
Kim
,
D. E.
, 2010, “
Novel Propelling Mechanisms Based on Friction Interaction for Endoscopic Robot
,”
Tribol. Trans.
1040-2004,
53
(
2
), pp.
203
211
.
22.
Stefanini
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
, 2006, “
Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular, Compliant and Slippery Environment
,”
Int. J. Robot. Res.
0278-3649,
25
(
5–6
), pp.
551
560
.
23.
Menciassi
,
A.
,
Stefanini
,
C.
,
Gorini
,
S.
,
Pernorio
,
G.
,
Kim
,
B.
,
Park
,
J. O.
, and
Dario
,
P.
, 2004, “
Locomotion of a Legged Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results
,”
IEEE International Conference on Engineering in Medicine and Biology
, San Francisco, CA, pp.
2767
2770
.
24.
Valdastri
,
P.
,
Webster
,
R. J.
,
Quaglia
,
C.
,
Quirini
,
M.
,
Menciassi
,
A.
, and
Dario
,
P.
, 2009, “
A New Mechanism for Mesoscale Legged Locomotion in Compliant Tubular Environments
,”
IEEE Transactions on Robotics
,
25
(
5
), pp.
1047
1057
.
25.
Ciuti
,
G.
,
Valdastri
,
P.
,
Menciassi
,
A.
, and
Dario
,
P.
, 2010, “
Robotic Magnetic Steering and Locomotion of Capsule Endoscope for Diagnostic and Surgical Endoluminal Procedures
,”
Robotica
0263-5747,
28
(
2
), pp.
199
207
.
26.
Simi
,
M.
,
Valdastri
,
P.
,
Quaglia
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
, 2010, “
Design, Fabrication, and Testing of a Capsule With Hybrid Locomotion for Gastrointestinal Tract Exploration
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
15
(
2
), pp.
170
180
.
27.
Menciassi
,
A.
,
Moglia
,
A.
,
Gorini
,
S.
,
Pernorio
,
G.
,
Stefanini
,
C.
, and
Dario
,
P.
, 2005, “
Shape Memory Alloy Clamping Devices of a Capsule for Monitoring Tasks in the Gastrointestinal Tract
,”
J. Micromech. Microeng.
0960-1317,
15
(
11
), pp.
2045
2055
.
28.
Harada
,
K.
,
Oetomo
,
D.
,
Susilo
,
E.
,
Menciassi
,
A.
,
Daney
,
D.
,
Merlet
,
J. -P.
, and
Dario
,
P.
, 2010, “
A Reconfigurable Modular Robotic Endoluminal Surgical System: Vision and Preliminary Results
,”
Robotica
0263-5747,
28
(
2
), pp.
171
183
.
29.
Karagozler
,
M.
,
Cheung
,
E.
,
Kwon
,
J.
, and
Sitti
,
M.
, 2006, “
Miniature Endoscopic Capsule Robot Using Biomimetic Micro-Patterned Adhesives
,”
Miomedical Robotics and Biomechatronics
, pp.
105
111
.
30.
Cheun
,
E.
,
Karagozler
,
E.
,
Park
,
S.
,
Kim
,
B.
, and
Sitti
,
M.
, 2005, “
A New Endoscopic Microcapsule Robot Using Beetle Inspired Microfibrillar Adhesives
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
551
557
.
31.
Glass
,
P.
,
Cheung
,
E.
, and
Sitti
,
M.
, 2008, “
A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
12
), pp.
2759
2767
.
32.
Rentschler
,
M.
, and
Reid
,
J.
, 2009, “
The Development of a Material Model and Wheel-Tissue Interaction for Simulating Wheeled Surgical Robot Mobility
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
2
), pp.
239
248
.
You do not currently have access to this content.