To determine the wear behavior of knee endoprostheses, implants are tested in knee simulators before being introduced to the market. Implants may undergo mechanical failure and wear debris is generated. The magnitude and morphology of this debris are determined to gain information about its biological reactivity. In this study, we describe the modifications made to the AMTI multistation knee simulator. The simulator is not capable to ensure a medially biased load distribution as required per ISO 14243, and therefore the usage of the simulator is limited. Thus, simulator modifications were made to implement a wear test as outlined in ISO 14243, and to improve both user-friendliness of operation and cost of simulation. In particular, this involved modifying the implant holders and controlling implant kinematics during the simulation. For component design, a 3D computer-aided design software was used. After the manufacturing of all components had been completed, the redesigned system was put into operation. In a final wear test, functionality and conformance with the ISO standard were tested for the modified simulator. After implementation of design modifications, it is possible to run wear tests with a medially biased load distribution according to ISO 14243.

1.
Ingham
,
E.
, and
Fisher
,
J.
, 2000, “
Biological Reactions to Wear Debris in Total Joint Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
(
1
), pp.
21
37
.
2.
Fisher
,
J.
,
McEwen
,
H. M. J.
,
Barnett
,
P. I.
,
Bell
,
C. J.
,
Stewart
,
T. D.
,
Stone
,
M. H.
, and
Ingham
,
E.
, 2001, “
Wear of Polyethylene in Artificial Knee Joints
,”
Clin. Orthop. Relat. Res.
0009-921X
15
, pp.
399
405
.
3.
EN 12564 Standard, 1998, “
Non-Active Surgical Implants—Joint Replacement Implants—Specific Requirements for Knee Joint Replacement Implants
.”
4.
Paul
,
J. P.
, 1967, “
Forces Transmitted by Joints in the Human Body
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
181
, pp.
8
15
.
5.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, and
Kalenak
,
A.
, 1992, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
0021-9290
25
(
4
), pp.
347
357
.
6.
Morrison
,
J. B.
, 1970, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
0021-9290
3
(
1
), pp.
51
61
.
7.
ISO 14243-1, 2002, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines With Load Control and Corresponding Environmental Conditions for Test
.”
8.
ISO 14243-3, 2004, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test
.”
9.
White
,
B.
,
D’Lima
,
D.
,
Drueding
,
A. C.
,
Cox
,
J.
, and
Carignan
,
F.
, 2005, “
A Simulator Study of TKR Kinematics Using Modelled Soft-Tissue Constraint: Virtual Soft-Tissue Control for Knee Simulation
,”
ASTM Symposium on Wear of Articulating Surfaces: Understanding Joint Simulation
,
S. A.
Brown
, ed.,
Dallas, TX
.
10.
Fukubayashi
,
T.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
, 1982, “
An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee. Tibial Displacement, Rotation, and Torque
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
64
(
2
), pp.
258
264
.
11.
Spector
,
B. M.
,
Ries
,
M. D.
,
Bourne
,
R. B.
,
Sauer
,
W. S.
,
Long
,
M.
, and
Hunter
,
G.
, 2001, “
Wear Performance of Ultra-High Molecular Weight Polyethylene on Oxidized Zirconium Total Knee Femoral Components
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355
83-A
, pp.
80
86
.
12.
Young
,
S. K.
,
Keller
,
T. S.
,
Greer
,
K. W.
, and
Gorhan
,
M. C.
, 2000, “
Wear Testing of UHMWPE Tibial Components: Influence of Oxidation
,”
ASME J. Tribol.
0742-4787,
122
, pp.
323
331
.
13.
Zhao
,
D.
,
Sakoda
,
H.
,
Sawyer
,
W. G.
,
Banks
,
S. A.
, and
Fregly
,
B. J.
, 2006, “
Can Pin-on-Plate Tests be Used to Predict Joint-Level Wear in Knee Replacements?
Proceedings of the 2006 ASME Summer Bioengineering Conference
,
Amelia Island, FL
, Jun. 21–25.
14.
Johnson
,
F.
,
Leitl
,
S.
, and
Waugh
,
W.
, 1980, “
The Distribution of Load Across the Knee. A Comparison of Static and Dynamic Measurements
,”
J. Bone Joint Surg. Br.
0301-620X
62
(
3
), pp.
346
349
.
15.
Harrington
,
I. J.
, 1983, “
Static and Dynamic Loading Patterns in Knee Joints With Deformities
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
65
(
2
), pp.
247
259
.
16.
Zhao
,
D.
,
Banks
,
S. A.
,
Mitchell
,
K.
,
D’Lima
,
D.
,
Colwell
,
C.
, and
Fregly
,
B. J.
, 2006, “
The Relationship Between the Knee Adduction Torque and Medial Contact Force During Gait
,”
Proceedings of the fifth World Congress of Biomechanics
,
D.
Liepsch
, ed.,
Munich, Germany
, Jul. 29–Aug. 4.
17.
Andriacchi
,
T. P.
,
Stanwyck
,
T. S.
, and
Galante
,
J. O.
, 1986, “
Knee Biomechanics and Total Knee Replacement
,”
J. Arthroplasty
0883-5403
1
(
3
), pp.
211
219
.
18.
Bourne
,
R. B.
,
Masonis
,
J.
, and
Anthony
,
M.
, 2003, “
An Analysis of Rotating-Platform Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
0009-921X
410
, pp.
173
180
.
19.
D’Lima
,
D. D.
,
Hermida
,
J. C.
,
Chen
,
P. C.
, and
Colwell
, Jr.,
C. W.
, 2001, “
Polyethylene Wear and Variations in Knee Kinematics
,”
Clin. Orthop. Relat. Res.
0009-921X
392
, pp.
124
130
.
20.
Muratoglu
,
O. K.
,
Bragdon
,
C. R.
,
Jasty
,
M.
,
O’Connor
,
D. O.
,
Von Knoch
,
R. S.
, and
Harris
,
W. H.
, 2004, “
Knee-Simulator Testing of Conventional and Cross-Linked Polyethylene Tibial Inserts
,”
J. Arthroplasty
0883-5403
19
(
7
), pp.
887
897
.
21.
VDI 2222:06-1997: Methodical Development of Solution Principles, VDI Guidelines, Düsseldorf, Germany.
22.
Muratoglu
,
O. K.
,
Perinchief
,
R. S.
,
Bragdon
,
C. R.
,
O’Connor
,
D. O.
,
Konrad
,
R.
, and
Harris
,
W. H.
, 2003, “
Metrology to Quantify Wear and Creep of Polyethylene Tibial Knee Inserts
,”
Clin. Orthop. Relat. Res.
0009-921X
410
, pp.
155
164
.
You do not currently have access to this content.