Abstract

This paper presents the kinematic design and development of a two degree-of-freedom (2DOF) spherical 5-bar thumb exoskeleton to augment the finger individuating grasp exercise robot (FINGER) rehabilitation robot, which assists the index and middle fingers individually in naturalistic grasping. The thumb module expands the capabilities of FINGER, allowing for broader proprioceptive training and assessment of hand function. The design process started by digitizing thumb-grasping motions to the index and the middle fingers separately, recorded from multiple healthy subjects utilizing a motion capture system. Fitting spheres to trajectory data of each subject allowed normalization of all subjects' data to a common center and radius. A two-revolute joint serial-chain mechanism was synthesized (intermediate optimization step) to reach the normalized trajectories. Next, the two resulting grasping trajectories were spatially sampled as targets for the 2DOF spherical 5-bar synthesis. Optimization of the spherical 5-bar included symmetry constraints and cost-function penalties for poor manipulability. The resulting exoskeleton assists both flexion/extension and abduction/adduction of the thumb enabling a wide range of motions. Consistent with FINGER, the parallel structure of the spherical 5-bar places the actuators at the base of the module, allowing for desirable characteristics, including high backdrivability, high controllable bandwidth, and low mechanical impedance. The mechanical design was developed from the kinematic solution, including an adjustable thumb cuff to accommodate different hand sizes. Fit and function of the device were tested on multiple subjects, including survivors of stroke. A proportional-derivative force controller with gravity and friction compensation was implemented to reduce resistance to motion during subject testing.

References

1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
, et al.,
2016
, “
Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
,”
Circulation
,
133
(
4
), pp.
447
454
.10.1161/CIR.0000000000000366
2.
Dobkin
,
B. H.
,
2005
, “
Clinical Practice. Rehabilitation After Stroke
,”
N. Engl. J. Med.
,
352
(
16
), pp.
1677
1684
.10.1056/NEJMcp043511
3.
Yue
,
Z.
,
Zhang
,
X.
, and
Wang
,
J.
,
2017
, “
Hand Rehabilitation Robotics on Poststroke Motor Recovery
,”
Behav. Neurol.
,
2017
(
3908135
), pp.
1
20
.10.1155/2017/3908135
4.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
,
de Ferranti
,
S. D.
, et al.,
2017
, “
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.10.1161/CIR.0000000000000485
5.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
van der Loos
,
M.
,
2002
, “
Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke
,”
Arch. Phys. Med. Rehabil.
,
83
(
7
), pp.
952
959
.10.1053/apmr.2001.33101
6.
Kawashimo
,
J.
,
Yamanoi
,
Y.
, and
Kato
,
R.
,
2017
, “
Development of Easily Wearable Assistive Device With Elastic Exoskeleton for Paralyzed Hand
,” 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (
RO-MAN
), Lisbon, Portugal, Aug. 28–Sept. 1, pp.
1159
1164
.10.1109/ROMAN.2017.8172450
7.
McConnell
,
A.
,
Kong
,
X.
, and
Vargas
,
P. A.
,
2014
, “
A Novel Robotic Assistive Device for Stroke Rehabilitation
,”
23rd IEEE International Symposium on Robot and Human Interactive Communication
, Edinburgh, UK, Aug. 25–29, pp.
917
923
.10.1109/ROMAN.2014.6926370
8.
Schabowsky
,
C. N.
,
Godfrey
,
S. B.
,
Holley
,
R. J.
, and
Lum
,
P. S.
,
2010
, “
Development and Pilot Testing of HEXORR: Hand Exoskeleton Rehabilitation Robot
,”
J. Neuroeng. Rehabil.
,
7
(
1
), pp.
1
16
.10.1186/1743-0003-7-36
9.
Maclean
,
N.
,
Pound
,
P.
,
Wolfe
,
C.
, and
Rudd
,
A.
,
2000
, “
Qualitative Analysis of Stroke Patients' Motivation for Rehabilitation
,”
BMJ
,
321
(
7268
), pp.
1051
1054
.10.1136/bmj.321.7268.1051
10.
Marchal-Crespo
,
L.
, and
Reinkensmeyer
,
D. J.
,
2009
, “
Review of Control Strategies for Robotic Movement Training After Neurologic Injury
,”
J. Neuroeng. Rehabil.
,
6
(
1
), pp.
1
15
.10.1186/1743-0003-6-20
11.
Fasoli
,
S. E.
,
Krebs
,
H. I.
,
Stein
,
J.
,
Frontera
,
W. R.
, and
Hogan
,
N.
,
2003
, “
Effects of Robotic Therapy on Motor Impairment and Recovery in Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
84
(
4
), pp.
477
482
.10.1053/apmr.2003.50110
12.
Cerasa
,
A.
,
Pignolo
,
L.
,
Gramigna
,
V.
,
Serra
,
S.
,
Olivadese
,
G.
,
Rocca
,
F.
,
Perrotta
,
P.
,
Dolce
,
G.
,
Quattrone
,
A.
, and
Tonin
,
P.
,
2018
, “
Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study
,”
Front. Neuroinf.
,
12
(
44
), p.
44
.10.3389/fninf.2018.00044
13.
Gandolfi
,
M.
,
Formaggio
,
E.
,
Geroin
,
C.
,
Storti
,
S. F.
,
Galazzo
,
I. B.
,
Bortolami
,
M.
,
Saltuari
,
L.
,
Picelli
,
A.
,
Waldner
,
A.
,
Manganotti
,
P.
, and
Smania
,
N.
,
2018
, “
Quantification of Upper Limb Motor Recovery and EEG Power Changes After Robot-Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study
,”
Neural Plast.
,
2018
, pp.
1
15
.10.1155/2018/8105480
14.
Mochizuki
,
G.
,
Centen
,
A.
,
Resnick
,
M.
,
Lowrey
,
C.
,
Dukelow
,
S. P.
, and
Scott
,
S. H.
,
2019
, “
Movement Kinematics and Proprioception in Post-Stroke Spasticity: Assessment Using the Kinarm Robotic Exoskeleton
,”
J. Neuroeng. Rehabil.
,
16
(
1
), pp.
1
13
.10.1186/s12984-019-0618-5
15.
Simo
,
L.
,
Botzer
,
L.
,
Ghez
,
C.
, and
Scheidt
,
R. A.
,
2014
, “
A Robotic Test of Proprioception Within the Hemiparetic Arm Post-Stroke
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
12
.10.1186/1743-0003-11-77
16.
Rinderknecht
,
M. D.
,
Lambercy
,
O.
,
Raible
,
V.
,
Büsching
,
I.
,
Sehle
,
A.
,
Liepert
,
J.
, and
Gassert
,
R.
,
2018
, “
Reliability, Validity, and Clinical Feasibility of a Rapid and Objective Assessment of Post-Stroke Deficits in Hand Proprioception
,”
J. Neuroeng. Rehabil.
,
15
(
1
), pp.
1
15
.10.1186/s12984-018-0387-6
17.
Zhou
,
Z.
,
Zhou
,
Y.
,
Wang
,
N.
,
Gao
,
F.
,
Wei
,
K.
, and
Wang
,
Q.
,
2015
, “
A Proprioceptive Neuromuscular Facilitation Integrated Robotic Ankle-Foot System for Post Stroke Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
111
122
.10.1016/j.robot.2014.09.023
18.
Sanguineti
,
V.
,
Casadio
,
M.
,
Vergaro
,
E.
,
Squeri
,
V.
,
Giannoni
,
P.
, and
Pg
,
M.
,
2009
, “
Robot Therapy for Stroke Survivors: Proprioceptive Training and Regulation of Assistance
,”
Stud. Health Technol. Inf.
,
145
, pp.
126
142
.10.3233/978-1-60750-018-6-126
19.
Reinsdorf
,
D.
,
Mahan
,
E.
, and
Reinkensmeyer
,
D.
,
2021
, “
Proprioceptive Gaming: Making Finger Sensation Training Intense and Engaging With the P-Pong Game and PINKIE Robot
,” 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Guadalajara, Mexico, Oct. 31–Nov. 4, pp.
6715
6720
.https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9631041
20.
Taheri
,
H.
,
Rowe
,
J. B.
,
Gardner
,
D.
,
Chan
,
V.
,
Gray
,
K.
,
Bower
,
C.
,
Reinkensmeyer
,
D. J.
, and
Wolbrecht
,
E. T.
,
2014
, “
Design and Preliminary Evaluation of the FINGER Rehabilitation Robot: Controlling Challenge and Quantifying Finger Individuation During Musical Computer Game Play
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
17
.10.1186/1743-0003-11-10
21.
Ingemanson
,
M. L.
,
Rowe
,
J. B.
,
Chan
,
V.
,
Wolbrecht
,
E. T.
,
Cramer
,
S. C.
, and
Reinkensmeyer
,
D. J.
,
2016
, “
Use of a Robotic Device to Measure Age-Related Decline in Finger Proprioception
,”
Exp. Brain Res.
,
234
(
1
), pp.
83
93
.10.1007/s00221-015-4440-4
22.
Ingemanson
,
M. L.
,
Rowe
,
J. R.
,
Chan
,
V.
,
Wolbrecht
,
E. T.
,
Reinkensmeyer
,
D. J.
, and
Cramer
,
S. C.
,
2019
, “
Somatosensory System Integrity Explains Differences in Treatment Response After Stroke
,”
Neurology
,
92
(
10
), pp.
E1098
E1108
.10.1212/WNL.0000000000007041
23.
Chung
,
K. C.
, and
Wei
,
F. C.
,
2000
, “
An Outcome Study of Thumb Reconstruction Using Microvascular Toe Transfer
,”
J. Hand Surg.
,
25
(
4
), pp.
651
658
.10.1053/jhsu.2000.6913
24.
Segu
,
S. S.
,
Athavale
,
S. N.
, and
Manjunath
,
P.
,
2015
, “
Osteoplastic Reconstruction for Post Traumatic Thumb Amputations Around Metacarpophalangeal Joint
,”
J. Clin. Diagn. Res.
,
9
(
8
), pp.
11
13
.10.7860/JCDR/2015/14334.6404
25.
Li
,
J.
,
Zheng
,
R.
,
Zhang
,
Y.
, and
Yao
,
J.
,
2011
, “
iHandRehab: An Interactive Hand Exoskeleton for Active and Passive Rehabilitation
,”
2011 IEEE International Conference on Rehabilitation Robotics
, ETH Zurich Science City, Switzerland, June 29–July 1, pp.
1
6
.10.1109/ICORR.2011.5975387
26.
Ueki
,
S.
,
Kawasaki
,
H.
,
Ito
,
S.
,
Nishimoto
,
Y.
,
Abe
,
M.
,
Aoki
,
T.
,
Ishigure
,
Y.
,
Ojika
,
T.
, and
Mouri
,
T.
,
2012
, “
Development of a Hand-Assist Robot With Multi-Degrees-of-Freedom for Rehabilitation Therapy
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
136
146
.10.1109/TMECH.2010.2090353
27.
Bouzit
,
M.
,
Burdea
,
G.
,
Popescu
,
G.
, and
Boian
,
R.
,
2002
, “
The Rutgers Master II—New Design Force-Feedback Glove
,”
IEEE/ASME Trans. Mechatron.
,
7
(
2
), pp.
256
263
.10.1109/TMECH.2002.1011262
28.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.10.1016/j.robot.2014.08.014
29.
Yap
,
H. K.
,
Lim
,
J. H.
,
Nasrallah
,
F.
, and
Yeow
,
C. H.
,
2017
, “
Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors
,”
Front. Neurosci.
,
11
, p.
547
.10.3389/fnins.2017.00547
30.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
29
.10.1186/1743-0003-11-3
31.
Suarez-Escobar
,
M.
, and
Rendon-Velez
,
E.
,
2018
, “
An Overview of Robotic/Mechanical Devices for Post-Stroke Thumb Rehabilitation
,”
Disabil. Rehabil. Assistive Technol.
,
13
(
7
), pp.
683
703
.10.1080/17483107.2018.1425746
32.
Wang
,
F.
,
Shastri
,
M.
,
Jones
,
C. L.
,
Gupta
,
V.
,
Osswald
,
C.
,
Kang
,
X.
,
Kamper
,
D. G.
, and
Sarkar
,
N.
,
2011
, “
Design and Control of an Actuated Thumb Exoskeleton for Hand Rehabilitation Following Stroke
,”
2011 IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
3688
3693
.10.1109/ICRA.2011.5980099
33.
Aiple
,
M.
, and
Schiele
,
A.
,
2013
, “
Pushing the Limits of the CyberGraspTM for Haptic Rendering
,”
2013 IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
3541
3546
.10.1109/ICRA.2013.6631073
34.
Takagi
,
M.
,
Iwata
,
K.
,
Takahashi
,
Y.
,
Yamamoto
,
S. I.
,
Koyama
,
H.
, and
Komeda
,
T.
,
2009
, “
Development of a Grip Aid System Using Air Cylinders
,”
2009 IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
2312
2317
.10.1109/ROBOT.2009.5152246
35.
Burton
,
T. M. W.
,
Vaidyanathan
,
R.
,
Burgess
,
S. C.
,
Turton
,
A. J.
, and
Melhuish
,
C.
,
2011
, “
Development of a Parametric Kinematic Model of the Human Hand and a Novel Robotic Exoskeleton
,”
2011 IEEE International Conference on Rehabilitation Robotics
, ETH Zurich Science City, Switzerland, June 29–July 1, pp.
1
7
.10.1109/ICORR.2011.5975344
36.
Agarwal
,
P.
,
Yun
,
Y.
,
Fox
,
J.
,
Madden
,
K.
, and
Deshpande
,
A. D.
,
2017
, “
Design, Control, and Testing of a Thumb Exoskeleton With Series Elastic Actuation
,”
Int. J. Rob. Res.
,
36
(
3
), pp.
355
375
.10.1177/0278364917694428
37.
Cantero-Téllez
,
R.
, and
Medina Porqueres
,
I.
,
2021
, “
Practical Exercises for Thumb Proprioception
,”
J. Hand Ther.
,
34
(
3
), pp.
488
492
.10.1016/j.jht.2020.03.005
38.
Mathiowetz
,
V.
,
Volland
,
G.
,
Kashman
,
N.
, and
Weber
,
K.
,
1985
, “
Adult Norms for the Box and Block Test of Manual Dexterity
,”
Am. J. Occup. Ther.
,
39
(
6
), pp.
386
391
.10.5014/ajot.39.6.386
39.
Samson
,
E.
,
Laurendeau
,
D.
,
Parizeau
,
M.
,
Comtois
,
S.
,
Allan
,
J. F.
, and
Gosselin
,
C.
,
2006
, “
The Agile Stereo Pair for Active Vision
,”
Mach. Vision Appl.
,
17
(
1
), pp.
32
50
.10.1007/s00138-006-0013-7
40.
Jiang
,
M.
,
Hu
,
X.
,
Liu
,
L.
, and
Yu
,
Y.
,
2012
, “
Study on Parallel 2-DOF Rotation Mechanism in Radar
,”
Phys. Procedia
,
24
, pp.
1830
1835
.10.1016/j.phpro.2012.02.269
41.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA'04
, New Orleans, LA, Apr. 26–May 1, pp.
829
834
.10.1109/ROBOT.2004.1307252
42.
Hsieh
,
H. C.
,
Chen
,
D. F.
,
Chien
,
L.
, and
Lan
,
C. C.
,
2017
, “
Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2034
2045
.10.1109/TMECH.2017.2717874
43.
Palmieri
,
G.
,
2015
, “
On the Positioning Error of a 2-DOF Spherical Parallel Wrist With Flexible Links and Joints—An FEM Approach
,”
Mech. Sci.
,
6
(
1
), pp.
9
14
.10.5194/ms-6-9-2015
44.
Danaei
,
B.
,
Arian
,
A.
,
Tale Masouleh
,
M.
, and
Kalhor
,
A.
,
2017
, “
Dynamic Modeling and Base Inertial Parameters Determination of a 2-DOF Spherical Parallel Mechanism
,”
Multibody Syst. Dyn.
,
41
(
4
), pp.
367
390
.10.1007/s11044-017-9578-3
45.
Cervantes-Sánchez
,
J.
,
Hernández-Rodrı́guez
,
J.
, and
González-Galván
,
E. J.
,
2004
, “
On the 5R Spherical, Symmetric Manipulator: Workspace and Singularity Characterization
,”
Mech. Mach. Theory
,
39
(
4
), pp.
409
429
.10.1016/j.mechmachtheory.2003.09.005
46.
Ouerfelli
,
M.
, and
Kumar
,
V.
,
1994
, “
Optimization of a Spherical Five-Bar Parallel Drive Linkage
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
166
173
.10.1115/1.2919341
47.
Heidari
,
O.
,
Wolbrecht
,
E. T.
,
Perez-Gracia
,
A.
, and
Yihun
,
Y. S.
,
2018
, “
A Task-Based Design Methodology for Robotic Exoskeletons
,”
J. Rehabil. Assistive Technol. Eng.
,
5
, pp.
1
12
.10.1177/2055668318800672
48.
Choi
,
W. H.
, and
Takeda
,
Y.
,
2021
, “
Geometric Design and Prototyping of a (2-RRU)-URR Parallel Mechanism for Thumb Rehabilitation Therapy
,”
Machines
,
9
(
3
), p.
50
.10.3390/machines9030050
49.
Zapatero-Gutiérrez
,
A.
,
Castillo-Castañeda
,
E.
, and
Laribi
,
M. A.
,
2021
, “
On the Optimal Synthesis of a Finger Rehabilitation Slider-Crank-Based Device With a Prescribed Real Trajectory: Motion Specifications and Design Process
,”
Appl. Sci. (Switzerland
),
11
(
2
), pp.
708
–7
24
.10.3390/app11020708
50.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
51.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M. A.
, and
Goswami
,
A.
,
2011
, “
Design of an Active One-Degree-of-Freedom Lower-Limb Exoskeleton With Inertia Compensation
,”
Int. J. Rob. Res.
,
30
(
4
), pp.
486
499
.10.1177/0278364910385730
You do not currently have access to this content.