Abstract

Microlaryngoscopic surgery is a type of laryngeal surgery performed by surgeons using microsurgical instruments under the observation of a specially designed laryngoscope. While performing a microlaryngoscopic operation, the surgeons must maintain their arms' position for a long time, which can cause arms' soreness and affect the accuracy of the operation. In this study, a tendon-sheath-driven upper limb auxiliary exoskeleton (TULAE) is proposed and developed. The flexible cables are compressed by a wave-shaped pressing mechanism to fix the TULAE's rotating joints. The TULAE can assist surgeons in laryngoscopy operations by providing suitable support for their arms to reduce the surgical risks caused by muscle fatigue. The TULAE has four degrees-of-freedom (DOFs) on each arm. The shoulder flexion/extension, shoulder abduction/adduction, and elbow internal rotation/external rotation can be fixed by the control box. The shoulder internal rotation/external rotation is a passive DOF obtained using hinges. The TULAE's shoulder, upper arm and forearm links are designed with lengths adjustable to accommodate wearers of different heights and weights. A large-scale but risk-free workspace is analyzed through rigid body kinematics using the spinor method. The control hardware of the TULAE is developed based on the open-source Arduino board. Finally, the experimental results show that this TULAE can significantly reduce the range of wrists shaking and assist surgeons in laryngoscopy surgery.

References

1.
Ayako
,
O.
,
Ujimoto
,
K.
, and
Yusuke
,
W.
,
2019
, “
Complaints and Complications of Microlaryngoscopic Surgery
,”
J. Voice
,
34
(
6
), pp.
949
955
.10.1016/j.jvoice.2019.05.006
2.
Abigail
,
A.
, and
Andrew
,
B.
,
1998
, “
Office-Based Direct Fiberoptic Laryngoscopic Surgery
,”
Operative Tech. Otolaryngol.-Head Neck Surg.
,
9
(
4
), pp.
238
242
.10.1016/S1043-1810(98)80010-9
3.
Anagha
,
A. J.
,
Madhu
,
S. V.
,
Tejal
,
S. P.
,
Kshitij
,
D. S.
, and
Renuka
,
A. B.
,
2019
, “
Management of Difficult Laryngeal Exposure During Suspension Microlaryngoscopy
,”
Indian J. Otolaryngol. Head Neck Surg.
,
71
(
1
), pp.
81
85
.10.1007/s12070-018-1481-6
4.
Akiyoshi
,
N.
,
Koji
,
F.
,
Masaya
,
Y.
,
Toshiaki
,
T.
,
Kengo
,
N.
,
Akinori
,
S.
,
Yutaka
,
Y.
, and
Naoto
,
U.
,
2018
, “
Microlaryngoscopic Surgery for Pyriform Msinus Fistulas in Children: A Report of Two Cases
,”
Surg. Case Rep.
,
4
(
1
), p.
113
.10.1186/s40792-018-0521-5
5.
Lindemann
,
T. L.
,
Brandon
,
K.
,
David
,
S.
, and
Ahmed
,
M. S.
,
2020
, “
Tongue Symptoms, Suspension Force and Duration During Operative Laryngoscopy
,”
Am. J. Otolaryngol.
,
41
(
3
), p.
102402
.10.1016/j.amjoto.2020.102402
6.
Meltem
,
T.
,
Tülin
,
S.
,
Birsen
,
Y. A.
,
Hacer
,
Y.
,
Mehmet
,
S. S.
,
Salih
,
A.
,
Ismail
,
G.
, and
Kerem
,
E.
,
2016
, “
Indirect Laryngoscopic Assessment for the Diagnosis of Difficult Intubation in Patients Undergoing Microlaryngeal Surgery
,”
Wien. Med. Wochenschr.
,
166
(
1–2
), pp.
62
67
.10.1007/s10354-015-0419-9
7.
Fang
,
R.
,
Chen
,
H.
, and
Sun
,
J.
,
2012
, “
Analysis of Pressure Applied During Microlaryngoscopy
,”
Eur. Arch. Oto-Rhino-Laryngol.
,
269
(
5
), pp.
1471
1476
.10.1007/s00405-012-1929-3
8.
Pietro
,
B.
, and
Giovanni
,
B.
,
2021
, “
Conceptual Design and Virtual Prototyping of a Wearable Upper Limb Exoskeleton for Assisted Operations
,”
Int. J. Interact. Des. Manuf.
,
15
(
4
), pp.
525
539
.10.1007/S12008-021-00779-9
9.
Moubarak
,
S.
,
Pham
,
M. T.
,
Moreau
,
R.
, and
Redarce
,
T.
,
2010
, “
Gravity Compensation of an Upper Extremity Exoskeleton
,”
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
,
2010
, pp.
4489
4493
.10.1109/IEMBS.2010.5626036
10.
Hyunchul
,
K.
,
Levi
,
M. M.
,
Nancy
,
B.
,
Gary
,
M. A.
, and
Jacob
,
R.
,
2012
, “
Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton
,”
IEEE Trans. Biomed. Eng.
,
59
(
6
), pp.
1990
1999
.10.1109/TBME.2012.2194489
11.
Sana
,
B.
,
Nahla
,
K. H.
, and
Safya
,
B.
,
2019
, “
Adaptive Sliding Mode Control With Gravity Compensation: Application to an Upper-Limb Exoskeleton System
,”
MATEC Web of Conferences
, Beyrouth, Liban, Vol.
261
, p.
06001
.10.1051/matecconf/201926106001
12.
Shen
,
Z.
,
Allison
,
G.
, and
Cui
,
L.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092302
.10.1115/1.4040486
13.
Wang
,
Y.
,
Ahmad
,
Z.
,
Zhao
,
Y.
, and
Zhang
,
D.
,
2022
, “
Extracting Human-Exoskeleton Interaction Torque for Cable-Driven Upper-Limb Exoskeleton Equipped With Torque Sensors
,”
IEEE/ASME Trans. Mechatron.
, epub, pp.
1
12
.10.1109/TMECH.2022.3154087
14.
Madden
,
K. E.
, and
Deshpande
,
A. D.
,
2015
, “
On Integration of Additive Manufacturing During the Design and Development of a Rehabilitation Robot: A Case Study
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111417
.10.1115/1.4031123
15.
Mourad
,
I.
,
Samir
,
L.
, and
Lotfi
,
R.
,
2018
, “
Dynamic Analysis and Control of a Hybrid Serial/Cable Driven Robot for Lower-Limb Rehabilitation
,”
Computational Kinematics
,
Springer
,
Cham, Switzerland
, pp.
109
116
.
16.
Jyotindra
,
N.
,
Bhaben
,
K.
, and
Santosha
,
K. D.
,
2021
, “
Development of Robot-Based Upper Limb Devices for Rehabilitation Purposes: A Systematic Review
,”
Augmented Hum. Res.
,
6
(
1
), p.
4
.10.1007/S41133-020-00043-X
17.
Ji
,
Y.
,
Chen
,
W.
,
Zhang
,
J.
,
Li
,
Z.
,
Fang
,
Z.
, and
Yang
,
G.
,
2022
, “
Self-Identification of Cable-Driven Exoskeleton Based on Asynchronous Iterative Method
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021013
.10.1115/1.4052380
18.
Paweł
,
M.
,
Jörg
,
E.
,
Kurt
,
G. H.
,
Arne
,
J. T.
, and
Steffen
,
L.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. NeuroEng. Rehabil.
,
11
(
1
), p.
3
.10.1186/1743-0003-11-3
19.
Su
,
H.
,
Hu
,
Y.
,
Hamid
,
R.
,
Alois
,
K.
,
Giancarlo
,
F.
, and
Elena
,
D.
,
2020
, “
Improved Recurrent Neural Network-Based Manipulator Control With Remote Center of Motion Constraints: Experimental Results
,”
Neural Networks
,
131
, pp.
291
299
.10.1016/j.neunet.2020.07.033
20.
Su
,
H.
,
Qi
,
W.
,
Yunus
,
S.
,
Salih
,
E.
,
Cai
,
S.
, and
Xiong
,
X.
,
2022
, “
A Human Activity-Aware Shared Control Solution for Medical Human–Robot Interaction
,”
Assem. Autom.
,
42
(
3
), pp.
388
394
.10.1108/AA-12-2021-0174
21.
Ai
,
L.
,
Zhou
,
T.
,
Wu
,
L.
,
Qian
,
W.
,
Xiao
,
X.
, and
Guo
,
Z.
,
2021
, “
Design of a 6 DOF Cable-Driven Upper Limb Exoskeleton
,”
Intelligent Robotics and Applications
,
Springer
,
Cham, Switzerland
, pp.
728
736
.
22.
Manna
,
S. K.
, and
Dubey
,
V. N.
,
2019
, “
A Portable Elbow Exoskeleton for Three Stages of Rehabilitation
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
065002
.10.1115/1.4044535
23.
Ruprecht
,
A.
,
Daniel
,
S.
, and
Konrad
,
S. S.
,
2016
, “
Design of a Passive, Iso-Elastic Upper Limb Exoskeleton for Gravity Compensation
,”
ROBOMECH J.
,
3
, p.
12
.10.1186/s40648-016-0051-5
24.
Hwiwon
,
S.
, and
Sangyoon
,
L.
,
2017
, “
Design and Experiments of an Upper-Limb Exoskeleton Robot
,”
14th International Conference on Ubiquitous Robots and Ambient Intelligence
,
Jeju, South Korea
, June 28–July 1, pp.
807
808
.10.1109/URAI.2017.7992830
25.
Agrawal
,
S.
,
Dubey
,
V.
,
John
,
J.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
,
2009
, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
(
3
), p.
031004
.10.1115/1.3191724
26.
Patrick
,
W.
,
Georg
,
M.
,
Thomas
,
M.
,
Achim
,
S.
, and
Erik
,
M.
,
2014
, “
Parametrization of an Exoskeleton for Robotic Stroke Rehabilitation
,”
Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation
, Vol. 7, Aalborg, Denmark, pp.
833
843
.https://link.springer.com/chapter/10.1007/978-3-319-08072-7_114
27.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.10.1115/1.4043456
28.
Gull
,
M.
,
Bai
,
S.
,
Blicher
,
J.
, and
Staermose
,
T.
,
2021
, “
Design and Performance Evaluation of a Hybrid Hand Exoskeleton for Hand Opening/Closing
,”
ASME J. Med. Devices
,
15
(
4
), p.
041007
.10.1115/1.4052448
29.
Qi
,
W.
,
Salih
,
E.
,
Li
,
Z.
,
Aldo
,
M.
, and
Song
,
R.
,
2021
, “
Multi-Sensor Guided Hand Gesture Recognition for a Teleoperated Robot Using a Recurrent Neural Network
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
6039
6045
.10.1109/LRA.2021.3089999
30.
Su
,
H.
,
Qi
,
W.
,
Chen
,
J.
, and
Zhang
,
D.
,
2022
, “
Fuzzy Approximation-Based Task-Space Control of Robot Manipulators With Remote Center of Motion Constraint
,”
IEEE Trans. Fuzzy Syst.
,
30
(
6
), pp.
1564
1573
.10.1109/TFUZZ.2022.3157075
31.
Jung
,
Y.
, and
Bae
,
J.
,
2015
, “
Kinematic Analysis of a 5-DOF Upper-Limb Exoskeleton With a Tilted and Vertically Translating Shoulder Joint
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1428
1439
.10.1109/TMECH.2014.2346767
32.
Huang
,
Y.
,
Chen
,
Y.
,
Zhang
,
X.
,
Zhang
,
H.
,
Song
,
C.
, and
Jun
,
O.
,
2021
, “
A Novel Cable-Driven 7-DOF Anthropomorphic Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2174
2185
.10.1109/TMECH.2020.3033309
33.
Pang
,
S.
,
Shang
,
W.
,
Zhang
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2022
, “
Design and Stiffness Analysis of a Novel 7-DOF Cable-Driven Manipulator
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2811
2818
.10.1109/LRA.2022.3144776
34.
Md
,
O.
,
Alex
,
R.
,
Gopal
,
N.
, and
Jae
,
C.
,
2021
, “
A Low-Cost Visual Grasp Aid for Neuropathy Patients Using Flexible Three-Dimensional Printed Tactile Sensors
,”
ASME J. Med. Devices
,
15
(
3
), p.
034502
.10.1115/1.4051247
You do not currently have access to this content.