Abstract

Cerebral aneurysm disease has extremely high mortality and morbidity, which can be efficiently treated by implanting a vascular stent. However, due to relatively poor flexibility and biodegradability, current vascular stents still cause some life-threatening complications. Thus, it is of great significance to develop new biodegradable cerebral stents (BCSs) with enhanced flexibility for improving the prognosis of cerebral aneurysm disease. In this work, a flexibility-enhanced BCS architecture has been investigated and designed. Both numerical simulation and experiments have been performed to demonstrate the potential clinical application of the proposed BCSs. First, the effects of the structural parameters on the flexibility have been analyzed by finite element simulation. Then, the mechanical properties of the proposed BCSs have been characterized via both numerical simulation and experiments and compared to those of two representative commercial stents for demonstrating the flexibility and radial stiffness of the proposed design. The knowledge from this work provides a new design methodology.

References

1.
Herbert
,
R.
,
Mishra
,
S.
,
Lim
,
H. R.
,
Yoo
,
H.
, and
Yeo
,
W. H.
,
2019
, “
Fully Printed, Wireless, Stretchable Implantable Biosystem Toward Batteryless, Real-Time Monitoring of Cerebral Aneurysm Hemodynamics
,”
Adv. Sci.
,
6
(
18
), p.
1901034
.10.1002/advs.201901034
2.
Jeon
,
J. P.
,
Cho
,
Y. D.
,
Rhim
,
J. K.
,
Park
,
J. J.
,
Cho
,
W. S.
,
Kang
,
H. S.
,
Kim
,
J. E.
,
Hwang
,
G.
,
Kwon
,
O. K.
, and
Han
,
M. H.
,
2016
, “
Stent-Assisted Coil Embolization of Vertebrobasilar Dissecting Aneurysms: Procedural Outcomes and Factors for Recanalization
,”
Korean J. Radiol.
,
17
(
5
), pp.
801
810
.10.3348/kjr.2016.17.5.801
3.
Liu
,
A.
,
Peng
,
T.
,
Qian
,
Z.
,
Li
,
Y.
,
Jiang
,
C.
,
Wu
,
Z.
, and
Yang
,
X.
,
2015
, “
Enterprise Stent-Assisted Coiling for Wide-Necked Intracranial Aneurysms During Ultra-Early (48 Hours) Subarachnoid Hemorrhage: A Single-Center Experience in 59 Consecutive Patients
,”
J. Neuroradiology
,
42
(
5
), pp.
298
303
.10.1016/j.neurad.2014.11.005
4.
Ten Brinck
,
M. F. M.
,
de Vries
,
J.
,
Bartels
,
R. H. M. A.
,
Grotenhuis
,
J. A.
, and
Boogaarts
,
H. D.
,
2019
, “
NeuroForm Atlas Stent-Assisted Coiling: Preliminary Results
,”
Neurosurgery
,
84
(
1
), pp.
179
189
.10.1093/neuros/nyy048
5.
Zaidat
,
O. O.
,
Hanel
,
R. A.
,
Sauvageau
,
E. A.
,
Aghaebrahim
,
A.
,
Lin
,
E.
,
Jadhav
,
A. P.
, and
Jovin
,
T. G.
, et al.,
2020
, “
Pivotal Trial of the Neuroform Atlas Stent for Treatment of Anterior Circulation Aneurysms: One-Year Outcomes
,”
Stroke
,
51
(
7
), pp.
2087
2094
.10.1161/STROKEAHA.119.028418
6.
Zhu
,
Y.
,
Zhang
,
H.
,
Zhang
,
Y.
,
Wu
,
H.
,
Wei
,
L.
,
Zhou
,
G.
,
Zhang
,
Y.
,
Deng
,
L.
,
Cheng
,
Y.
,
Li
,
M.
,
Santos
,
H. A.
, and
Cui
,
W.
,
2019
, “
Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases
,”
Adv. Mater.
,
31
(
8
), p.
1805452
.10.1002/adma.201805452
7.
Alexander
,
M. J.
,
Zauner
,
A.
,
Gupta
,
R.
,
Alshekhlee
,
A.
,
Fraser
,
J. F.
,
Toth
,
G.
,
Given
,
C.
,
Mackenzie
,
L.
,
Kott
,
B.
,
Hassan
,
A. E.
,
Shownkeen
,
H.
,
Baxter
,
B. W.
,
Callison
,
R. C.
, and
Yu
,
W.
,
2021
, “
The WOVEN Trial: Wingspan One-Year Vascular Events and Neurologic Outcomes
,”
J. Neurointerventional Surg.
,
13
(
4
), pp.
307
310
.10.1136/neurintsurg-2020-016208
8.
Picard
,
F.
,
Pighi
,
M.
,
de Hemptinne
,
Q.
,
Airaksinen
,
J.
,
Vinco
,
G.
,
de Pommereau
,
A.
,
Biancari
,
F.
, and
Varenne
,
O.
,
2019
, “
Comparison of the Biodegradable Polymer Everolimus-Eluting Stent With Contemporary Drug-Eluting Stents: A Systematic Review and Meta-Analysis
,”
Int. J. Cardiol.
,
278
, pp.
51
56
.10.1016/j.ijcard.2018.11.113
9.
Tian
,
Z.
,
Liu
,
J.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Zhang
,
H.
,
Yang
,
M.
,
Yang
,
X.
, and
Wang
,
K.
,
2020
, “
Risk Factors of Angiographic Recurrence After Endovascular Coil Embolization of Intracranial Saccular Aneurysms: A Retrospective Study Using a Multicenter Database
,”
Front. Neurol.
,
11
, p.
1026
.10.3389/fneur.2020.01026
10.
Jinnouchi
,
H.
,
Torii
,
S.
,
Sakamoto
,
A.
,
Kolodgie
,
F. D.
,
Virmani
,
R.
, and
Finn
,
A. V.
,
2019
, “
Fully Bioresorbable Vascular Scaffolds: Lessons Learned and Future Directions
,”
Nat. Rev. Cardiol.
,
16
(
5
), pp.
286
304
.10.1038/s41569-018-0124-7
11.
Ang
,
H. Y.
,
Bulluck
,
H.
,
Wong
,
P.
,
Venkatraman
,
S. S.
,
Huang
,
Y.
, and
Foin
,
N.
,
2017
, “
Bioresorbable Stents: Current and Upcoming Bioresorbable Technologies
,”
Int. J. Cardiol.
,
228
, pp.
931
939
.10.1016/j.ijcard.2016.11.258
12.
Onuma
,
Y.
, and
Serruys
,
P. W.
,
2017
, “
Rather Thick, Yet Antithrombogenic: Is the Magmaris Scaffold a New Hope for Bioresorbable Coronary Scaffold?
,”
Circ.: Cardiovasc. Interventions
,
10
(
8
), p.
e005663
.10.1161/CIRCINTERVENTIONS.117.005663
13.
Haude
,
M.
,
Ince
,
H.
,
Abizaid
,
A.
,
Toelg
,
R.
,
Lemos
,
P. A.
,
Birgelen
,
C. V.
,
Christiansen
,
E. H.
,
Wijns
,
W.
,
Neumann
,
F.-J.
,
Kaiser
,
C.
,
Eeckhout
,
E.
,
Lim
,
S. T.
,
Escaned
,
J.
,
Garcia-Garcia
,
H. M.
, and
Waksman
,
R.
,
2016
, “
Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaff Old in Patients With De-Novo Coronary Artery Lesions (BIOSOLVE-II): 6 Month Results of a Prospective, Multicentre, Nonrandomised, First-in-Man Trial
,”
Lancet
,
387
(
10013
), pp.
31
39
.10.1016/S0140-6736(15)00447-X
14.
Yoshinobu
,
O.
, and
Patrick
,
W. S.
,
2020
, “
Sustained Safety and Efficacy of the Magnesium Scaffold: Does the Magmaris Scaffold Call for the Return of BRS Research… and Randomised Controlled Trials?
,”
EuroIntervention
,
15
(
15
), pp.
e1307
e1311
.10.4244/EIJV15I15A238
15.
Haude
,
M.
,
Ince
,
H.
,
Abizaid
,
A.
,
Toelg
,
R.
,
Lemos
,
P. A.
,
von Birgelen
,
C.
,
Christiansen
,
E. H.
,
Wijns
,
W.
,
Neumann
,
F.-J.
,
Kaiser
,
C.
,
Eeckhout
,
E.
,
Lim
,
S. T.
,
Escaned
,
J.
,
Onuma
,
Y.
,
Garcia-Garcia
,
H. M.
, and
Waksman
,
R.
,
2016
, “
Sustained Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients With De Novo Coronary Lesions: 12-Month Clinical Results and Angiographic Findings of the BIOSOLVE-II First-in-Man Trial
,”
Eur. Heart J.
,
37
(
35
), pp.
2701
2709
.10.1093/eurheartj/ehw196
16.
Ortega-Paz
,
L.
,
Brugaletta
,
S.
,
Gomez-Lara
,
J.
,
Sanchis
,
J.
,
Fernández-Díaz
,
J. A.
,
Artaiz-Urdaci
,
M.
,
Alfonso
,
F.
,
Garcia-Garcia
,
H. M.
, and
Sabaté
,
M.
,
2021
, “
Target Lesion Revascularisation of Bioresorbable Metal Scaffolds: A Case Series Study and Literature Review
,”
EuroIntervention
,
16
(
13
), pp.
1100
1103
.10.4244/EIJ-D-19-00421
17.
Verheye
,
S.
,
Wlodarczak
,
A.
,
Montorsi
,
P.
,
Bennett
,
J.
,
Torzewski
,
J.
,
Haude
,
M.
,
Vrolix
,
M.
,
Buck
,
T.
,
Aminian
,
A.
,
van der Schaaf
,
R. J.
,
Nuruddin
,
A. A.
, and
Lee
,
M. K. Y.
,
2020
, “
Twelve-Month Outcomes of 400 Patients Treated With a Resorbable Metal Scaffold: Insights From the BIOSOLVE-IV Registry
,”
EuroIntervention
,
15
(
15
), pp.
e1383
e1386
.10.4244/EIJ-D-18-01058
18.
Wu
,
W.
,
Chen
,
S.
,
Gastaldi
,
D.
,
Petrini
,
L.
,
Mantovani
,
D.
,
Yang
,
K.
,
Tan
,
L.
, and
Migliavacca
,
F.
,
2013
, “
Experimental Data Confirm Numerical Modeling of the Degradation Process of Magnesium Alloys Stents
,”
Acta Biomater.
,
9
(
10
), pp.
8730
8739
.10.1016/j.actbio.2012.10.035
19.
Chen
,
C.
,
Chen
,
J.
,
Wu
,
W.
,
Shi
,
Y.
,
Jin
,
L.
,
Petrini
,
L.
,
Shen
,
L.
,
Yuan
,
G.
,
Ding
,
W.
,
Ge
,
J.
,
Edelman
,
E. R.
, and
Migliavacca
,
F.
,
2019
, “
In Vivo and In Vitro Evaluation of a Biodegradable Magnesium Vascular Stent Designed by Shape Optimization Strategy
,”
Biomaterials
,
221
, p.
119414
.10.1016/j.biomaterials.2019.119414
20.
Schiavone
,
A.
,
Abunassar
,
C.
,
Hossainy
,
S.
, and
Zhao
,
L. G.
,
2016
, “
Computational Analysis of Mechanical Stress-Strain Interaction of a Bioresorbable Scaffold With Blood Vessel
,”
J. Biomech.
,
49
(
13
), pp.
2677
2683
.10.1016/j.jbiomech.2016.05.035
21.
Feng
,
Q.
,
Jiang
,
W.
,
Sun
,
K.
,
Sun
,
K.
,
Chen
,
S.
,
Zhao
,
L.
,
Dai
,
K.
, and
Ma
,
N.
,
2011
, “
Mechanical Properties and In Vivo Performance of a Novel Sliding-Lock Bioabsorbable Poly-p-Dioxanone Stent
,”
J. Mater. Sci.: Mater. Med.
,
22
(
10
), pp.
2319
2327
.10.1007/s10856-011-4407-3
22.
Wei
,
Y.
,
Wang
,
M.
,
Zhao
,
D.
,
Li
,
H.
, and
Jin
,
Y.
,
2019
, “
Structural Design of Mechanical Property for Biodegradable Polymeric Stent
,”
Adv. Mater. Sci. Eng.
,
2019
, pp.
1
14
.10.1155/2019/2960435
23.
Sternberg
,
K.
,
Grabow
,
N.
,
Petersen
,
S.
,
Weitschies
,
W.
,
Harder
,
C.
,
Ince
,
H.
,
Kroemer
,
H. K.
, and
Schmitz
,
K.-P.
,
2013
, “
Advances in Coronary Stent Technology–Active Drug-Loaded Stent Surfaces for Prevention of Restenosis and Improvement of Biocompatibility
,”
Curr. Pharm. Biotechnol.
,
14
(
1
), pp.
76
90
.10.2174/138920113804805377
24.
Hu
,
T.
,
Yang
,
C.
,
Lin
,
S.
,
Yu
,
Q.
, and
Wang
,
G.
,
2018
, “
Biodegradable Stents for Coronary Artery Disease Treatment: Recent Advances and Future Perspectives
,”
Mater. Sci. Eng., C
,
91
, pp.
163
178
.10.1016/j.msec.2018.04.100
25.
Bian
,
D.
,
Zhou
,
X.
,
Liu
,
J.
,
Li
,
W.
,
Shen
,
D.
,
Zheng
,
Y.
,
Gu
,
W.
,
Jiang
,
J.
,
Li
,
M.
,
Chu
,
X.
,
Ma
,
L.
,
Wang
,
X.
,
Zhang
,
Y.
,
Leeflang
,
S.
, and
Zhou
,
J.
,
2021
, “
Degradation Behaviors and in-Vivo Biocompatibility of a Rare Earth- and Aluminum-Free Magnesium-Based Stent
,”
Acta Biomater.
,
124
, pp.
382
397
.10.1016/j.actbio.2021.01.031
26.
Karanasiou
,
G. S.
,
Papafaklis
,
M. I.
,
Conway
,
C.
,
Michalis
,
L. K.
,
Tzafriri
,
R.
,
Edelman
,
E. R.
, and
Fotiadis
,
D. I.
,
2017
, “
Stents: Biomechanics, Biomaterials, and Insights From Computational Modeling
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
853
872
.10.1007/s10439-017-1806-8
27.
Venezuela
,
J.
, and
Dargusch
,
M. S.
,
2019
, “
The Influence of Alloying and Fabrication Techniques on the Mechanical Properties, Biodegradability and Biocompatibility of Zinc: A Comprehensive Review
,”
Acta Biomater.
,
87
, pp.
1
40
.10.1016/j.actbio.2019.01.035
28.
Shi
,
W.
,
Li
,
H.
,
Zhu
,
T.
,
Jin
,
Y.
,
Wang
,
H.
,
Yang
,
J.
, and
Zhao
,
D.
,
2020
, “
Study on the Bending Behavior of Biodegradable Metal Cerebral Vascular Stents Using Finite Element Analysis
,”
J. Biomech.
,
108
, p.
109856
.10.1016/j.jbiomech.2020.109856
29.
Shi
,
W.
,
Li
,
H.
,
Mitchell
,
K.
,
Zhang
,
C.
,
Zhu
,
T.
,
Jin
,
Y.
, and
Zhao
,
D.
,
2021
, “
A Multi-Dimensional Non-Uniform Corrosion Model for Bioabsorbable Metallic Vascular Stents
,”
Acta Biomater.
,
131
, pp.
572
580
.10.1016/j.actbio.2021.07.008
30.
Ang
,
H. Y.
,
Huang
,
Y. Y.
,
Lim
,
S. T.
,
Wong
,
P.
,
Joner
,
M.
, and
Foin
,
N.
,
2017
, “
Mechanical Behavior of Polymer-Based vs. Metallic-Based Bioresorbable Stents
,”
J. Thorac. Dis.
,
9
(
S9
), pp.
S923
S934
.10.21037/jtd.2017.06.30
31.
ASTM,
2014
, “
Standard Guide for Three-Point Bending of Balloon Expandable Vascular Stents and Stent Systems
,”
ASTM
, West Conshohocken, PA, Standard No. ASTM F2606-08.
32.
Zhao
,
F.
,
Xue
,
W.
,
Wang
,
F.
,
Yu
,
C.
,
Xu
,
H.
,
Hao
,
Y.
, and
Wang
,
L.
,
2017
, “
A New Approach to Improve the Local Compressive Properties of PPDO Self-Expandable Stent
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
318
326
.10.1016/j.jmbbm.2017.02.015
33.
ISO
,
2012
, “
Cardiovascular Implants—Endovascular Devices—Part 2: Vascular Stents
,”
The International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 25539–2.
34.
Garcia
,
A.
,
Pena
,
E.
, and
Martinez
,
M. A.
,
2012
, “
Influence of Geometrical Parameters on Radial Force During Self-Expanding Stent Deployment. Application for a Variable Radial Stiffness Stent
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
166
175
.10.1016/j.jmbbm.2012.02.006
35.
Foin
,
N.
,
Di Mario
,
C.
,
Francis
,
D. P.
, and
Davies
,
J. E.
,
2013
, “
Stent Flexibility Versus Concertina Effect: Mechanism of an Unpleasant Trade-Off in Stent Design and Its Implications for Stent Selection in the Cath-Lab
,”
Int. J. Cardiol.
,
164
(
3
), pp.
259
261
.10.1016/j.ijcard.2012.09.143
36.
Bagherifard
,
S.
,
Hickey
,
D. J.
,
Fintova
,
S.
,
Pastorek
,
F.
,
Fernandez-Pariente
,
I.
,
Bandini
,
M.
,
Webster
,
T. J.
, and
Guagliano
,
M.
,
2018
, “
Effects of Nanofeatures Induced by Severe Shot Peening (SSP) on Mechanical, Corrosion and Cytocompatibility Properties of Magnesium Alloy AZ31
,”
Acta Biomater.
,
66
, pp.
93
108
.10.1016/j.actbio.2017.11.032
37.
Bose
,
S.
,
Robertson
,
S. F.
, and
Bandyopadhyay
,
A.
,
2018
, “
Surface Modification of Biomaterials and Biomedical Devices Using Additive Manufacturing
,”
Acta Biomater.
,
66
, pp.
6
22
.10.1016/j.actbio.2017.11.003
38.
Wang
,
J.
,
He
,
Y.
,
Maitz
,
M. F.
,
Collins
,
B.
,
Xiong
,
K.
,
Guo
,
L.
,
Yun
,
Y.
,
Wan
,
G.
, and
Huang
,
N.
,
2013
, “
A Surface-Eroding Poly(1,3-Trimethylene Carbonate) Coating for Fully Biodegradable Magnesium-Based Stent Applications: Toward Better Biofunction, Biodegradation and Biocompatibility
,”
Acta Biomater.
,
9
(
10
), pp.
8678
8689
.10.1016/j.actbio.2013.02.041
39.
Saeki
,
N.
, and
Rhoton
,
A. L.
,
1977
, “
Microsurgical Anatomy of the Upper Basilar Artery and the Posterior Circle of Willis
,”
J. Neurosurg.
,
46
(
5
), pp.
563
578
.10.3171/jns.1977.46.5.0563
40.
DeVault
,
K.
,
Gremaud
,
P. A.
,
Novak
,
V.
,
Olufsen
,
M. S.
,
Vernières
,
G.
, and
Zhao
,
P.
,
2008
, “
Blood Flow in the Circle of Willis: Modeling and Calibration
,”
Multiscale Model. Simul.
,
7
(
2
), pp.
888
909
.10.1137/07070231X
You do not currently have access to this content.