Abstract

Thermoregulation research and various medical procedures are accomplished by manipulating skin temperature in a nonuniform pattern. Skin temperature monitoring is essential to assess conformance to protocol specifications and to prevent thermal injury. Existing solutions for skin temperature monitoring include single point sensors, such as thermocouples, and two-dimensional methods of sensing surface temperature, such as infrared thermography, and wearable technology. Single point sensors cannot detect the average temperature and consequently their measurements cannot be representative of average surface temperature in a nonuniform temperature field. Infrared thermography requires optical access, and existing ambulatory sensors may require complex manufacturing processes and impede the heat exchange with a source by including a structural substrate layer. Our solution is a two-dimensional resistance temperature detector (two-dimensional (2D) RTD) created by knitting copper magnet wire into custom shapes. The 2D RTDs were calibrated, compared to one-dimensional sensors and wearable sensors, and analyzed for hysteresis, repeatability, and surface area conformation. Resistance and temperature were correlated with an R2 of 0.99. The 2D RTD proved to be a superior device for measuring average skin temperature over a defined area exposed to a nonuniform temperature boundary in the absence of optical access such as when a full body thermal control garment is worn.

References

1.
Romanovsky
,
A. A.
,
2018
, “
Chapter 1—The Thermoregulation System and How It Works
,”
Handbook of Clinical Neurology
,
A. A.
Romanovsky
,
ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
3
43
.
2.
Zak
,
R. B.
,
Hassenstab
,
B. M.
,
Zuehlke
,
L. K.
,
Heesch
,
M. W. S.
,
Shute
,
R. J.
,
Laursen
,
T. L.
,
LaSalle
,
D. T.
, and
Slivka
,
D. R.
,
2018
, “
Impact of Local Heating and Cooling on Skeletal Muscle Transcriptional Response Related to Myogenesis and Proteolysis
,”
Eur. J. Appl. Physiol.
,
118
(
1
), pp.
101
109
.10.1007/s00421-017-3749-z
3.
Nahabet
,
E.
,
Riazi
,
H.
,
Asirwatham
,
M.
,
Wirtz
,
E.
,
Harvey
,
D. J.
,
Varghai
,
D.
, and
Guyuron
,
B.
,
2017
, “
Contact Cooling of Random-Pattern Cutaneous Flaps: Does It Increase Necrosis?
,”
Aesthetic Plast. Surg.
,
41
(
2
), pp.
448
453
.10.1007/s00266-017-0787-1
4.
Varon
,
J.
, and
Acosta
,
P.
,
2008
, “
Therapeutic Hypothermia
,”
Chest
,
133
(
5
), pp.
1267
1274
.10.1378/chest.07-2190
5.
Janicki
,
P. K.
,
Stoica
,
C.
,
Chapman
,
W. C.
,
Wright
,
J. K.
,
Walker
,
G.
,
Pai
,
R.
,
Walia
,
A.
,
Pretorius
,
M.
, and
Pinson
,
C. W.
,
2002
, “
Water Warming Garment Versus Forced Air Warming System in Prevention of Intraoperative Hypothermia During Liver Transplantation: A Randomized Controlled Trial [ISRCTN32154832]
,”
BMC Anesthesiol
,
2
(
1
), p.
7
.10.1186/1471-2253-2-7
6.
Khoshnevis
,
S.
,
Nordhauser
,
J. E.
,
Craik
,
N. K.
, and
Diller
,
K. R.
,
2014
, “
Quantitative Evaluation of the Thermal Heterogeneity on the Surface of Cryotherapy Cooling Pads
,”
ASME J. Biomech. Eng.
,
136
(
7
), p.
074503
.10.1115/1.4027270
7.
Truell
,
K. D.
,
Bakerman
,
P. R.
,
Teodori
,
M. F.
, and
Maze
,
A.
,
2000
, “
Third-Degree Burns Due to Intraoperative Use of a Bair Hugger Warming Device
,”
Ann. Thorac. Surg.
,
69
(
6
), pp.
1933
1934
.10.1016/S0003-4975(00)01322-9
8.
Monseau
,
A. J.
,
Reed
,
Z. M.
,
Langley
,
K. J.
, and
Onks
,
C.
,
2015
, “
Sunburn, Thermal, and Chemical Injuries to the Skin
,”
Prim. Care Clin. Off. Pract.
,
42
(
4
), pp.
591
605
.10.1016/j.pop.2015.07.003s
9.
Stoll
,
A. M.
, and
Hardy
,
J. D.
,
1950
, “
Study of Thermocouples as Skin Thermometers
,”
J. Appl. Physiol.
,
2
(
10
), pp.
531
543
.10.1152/jappl.1950.2.10.531
10.
Jayathilaka
,
W. A. D. M.
,
Qi
,
K.
,
Qin
,
Y.
,
Chinnappan
,
A.
,
Serrano‐García
,
W.
,
Baskar
,
C.
,
Wang
,
H.
,
He
,
J.
,
Cui
,
S.
,
Thomas
,
S. W.
, and
Ramakrishna
,
S.
,
2019
, “
Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors
,”
Adv. Mater.
,
31
(
7
), p.
1805921
.10.1002/adma.201805921
11.
Park
,
S.
, and
Jayaraman
,
S.
,
2021
, “
Chapter 1—Wearables: Fundamentals, Advancements, and a Roadmap for the Future
,”
Wearable Sensors
, 2nd ed.,
E.
Sazonov
, ed.,
Academic Press
,
Oxford
, UK, pp.
3
27
.
12.
Yang
,
Y.-J.
,
Cheng
,
M.-Y.
,
Chang
,
W.-Y.
,
Tsao
,
L.-C.
,
Yang
,
S.-A.
,
Shih
,
W.-P.
,
Chang
,
F.-Y.
,
Chang
,
S.-H.
, and
Fan
,
K.-C.
,
2008
, “
An Integrated Flexible Temperature and Tactile Sensing Array Using PI-Copper Films
,”
Sens. Actuators Phys.
,
143
(
1
), pp.
143
153
.10.1016/j.sna.2007.10.077
13.
Shih
,
W.-P.
,
Tsao
,
L.-C.
,
Lee
,
C.-W.
,
Cheng
,
M.-Y.
,
Chang
,
C.
,
Yang
,
Y.-J.
, and
Fan
,
K.-C.
,
2010
, “
Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite
,”
Sensors
,
10
(
4
), pp.
3597
3610
.10.3390/s100403597
14.
Locher
,
I.
, and
Kirstein
,
T.
,
2005
, “
Temperature Profile Estimation With Smart Textiles
,”
Proceedings of the International Conference on Intelligent Textiles, Smart Clothing, Well-Being, and Design
.https://www.researchgate.net/publication/229003785_Temperature_profile_estimation_with_smart_textiles
15.
Chen
,
Y.
,
Lu
,
B.
,
Chen
,
Y.
, and
Feng
,
X.
,
2015
, “
Breathable and Stretchable Temperature Sensors Inspired by Skin
,”
Sci. Rep.
,
5
(
1
), p.
11505
.10.1038/srep11505
16.
Mattana
,
G.
,
Kinkeldei
,
T.
,
Leuenberger
,
D.
,
Ataman
,
C.
,
Ruan
,
J. J.
,
Molina-Lopez
,
F.
,
Quintero
,
A. V.
,
Nisato
,
G.
,
Tröster
,
G.
,
Briand
,
D.
, and
de Rooij
,
N. F.
,
2013
, “
Woven Temperature and Humidity Sensors on Flexible Plastic Substrates for E-Textile Applications
,”
IEEE Sens. J.
,
13
(
10
), pp.
3901
3909
.10.1109/JSEN.2013.2257167
17.
Husain
,
M. D.
,
Kennon
,
R.
, and
Dias
,
T.
,
2014
, “
Design and Fabrication of Temperature Sensing Fabric
,”
J. Ind. Text.
,
44
(
3
), pp.
398
417
.10.1177/1528083713495249
18.
Bai
,
Y.
,
Li
,
H.
,
Gan
,
S.
,
Li
,
Y.
,
Liu
,
H.
, and
Chen
,
L.
,
2018
, “
Flexible Heating Fabrics With Temperature Perception Based on Fine Copper Wire and Fusible Interlining Fabrics
,”
Measurement
,
122
, pp.
192
200
.10.1016/j.measurement.2018.03.021
19.
Yang
,
J.
,
Wei
,
D.
,
Tang
,
L.
,
Song
,
X.
,
Luo
,
W.
,
Chu
,
J.
,
Gao
,
T.
,
Shi
,
H.
, and
Du
,
C.
,
2015
, “
Wearable Temperature Sensor Based on Graphene Nanowalls
,”
RSC Adv.
,
5
(
32
), pp.
25609
25615
.10.1039/C5RA00871A
20.
Shin
,
J.
,
Jeong
,
B.
,
Kim
,
J.
,
Nam
,
V. B.
,
Yoon
,
Y.
,
Jung
,
J.
,
Hong
,
S.
,
Lee
,
H.
,
Eom
,
H.
,
Yeo
,
J.
,
Choi
,
J.
,
Lee
,
D.
, and
Ko
,
S. H.
,
2020
, “
Sensitive Wearable Temperature Sensor With Seamless Monolithic Integration
,”
Adv. Mater.
,
32
(
2
), p.
1905527
.10.1002/adma.201905527
21.
Lugoda
,
P.
,
Hughes-Riley
,
T.
,
Morris
,
R.
, and
Dias
,
T.
,
2018
, “
A Wearable Textile Thermograph
,”
Sensors
,
18
(
7
), p.
2369
.10.3390/s18072369
22.
Wu
,
R.
,
Ma
,
L.
,
Hou
,
C.
,
Meng
,
Z.
,
Guo
,
W.
,
Yu
,
W.
,
Yu
,
R.
,
Hu
,
F.
, and
Liu
,
X. Y.
,
2019
, “
Silk Composite Electronic Textile Sensor for High Space Precision 2D Combo Temperature–Pressure Sensing
,”
Small
,
15
(
31
), p.
1901558
.10.1002/smll.201901558
23.
Dauphinee
,
T. M.
, and
Preston‐Thomas
,
H.
,
1954
, “
A Copper Resistance Temperature Scale
,”
Rev. Sci. Instrum.
,
25
(
9
), pp.
884
886
.10.1063/1.1771200
24.
Nawab
,
Y.
,
Hamdani
,
S. T. A.
, and
Shaker
,
K.
,
2017
,
Structural Textile Design: Interlacing and Interlooping
,
CRC Press
,
Boca Raton, FL
.
25.
Namisnak
,
L. H.
,
Khoshnevis
,
S.
, and
Diller
,
K. R.
,
2019
, “
Selective Thermal Stimulation Delays the Progression of Vasoconstriction During Body Cooling
,”
ASME J. Biomech. Eng.
,
141
(
12
), p.
124504
.10.1115/1.4045114
26.
National Electrical Manufacturers Association
,
2016
, “
NEMA MW 1000—Magnet Wire
,” National Electrical Manufacturers Association
, Arlington, VA.
27.
Hall
,
J. E.
,
2016
, “
Functional Organization of the Human Body and Control of the ‘Internal Environment
,”
Guyton and Hall Textbook of Medical Physiology
,
Elsevier
,
Philadelphia, PA
, pp.
3
10
.
28.
Glycerine Producers' Association
,
1963
,
Physical Properties of Glycerine and Its Solutions
,
Glycerine Producers' Association
,
New York
.
29.
National Bureau of Standards. and Institute for Applied Technology (U.S.)
.,
1966
, “
Office of Engineering Standards
,”
Copper Wire Tables
,
National Bureau of Standards
, Washington, DC.
30.
Dellinger
,
J. H.
,
1911
,
The Temperature Coefficient of Resistance of Copper
,
U.S. Government Printing Office, Washington, DC
.
31.
COMSOL AB, 2020, “
COMSOL Multiphysics® v. 5.5
,”
COMSOL AB
,
Stockholm, Sweden
, accessed June 25, 2021, www.comsol.com
32.
Fiala
,
D.
,
Lomas
,
K. J.
, and
Stohrer
,
M.
,
1999
, “
A Computer Model of Human Thermoregulation for a Wide Range of Environmental Conditions: The Passive System
,”
J. Appl. Physiol.
,
87
(
5
), pp.
1957
1972
.10.1152/jappl.1999.87.5.1957
33.
Hasgall
,
P.
,
Di Gennaro
,
F.
,
Baumgartner
,
C.
,
Neufeld
,
E.
,
Lloyd
,
B.
,
Gosselin
,
M.
,
Payne
,
D.
,
Klingenböck
,
A.
, and
Kuster
,
N.
,
2018
, “
IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
,” Version 4.0.10.13099/VIP21000-04-0
34.
Oğlakcioğlu
,
N.
, and
Marmarali
,
A.
,
2007
, “
Thermal Comfort Properties of Some Knitted Structures
,”
Fibres Text. East. Eur.
,
Nr 5–6
(
64
), pp.
94
96
.
35.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
You do not currently have access to this content.