The in-pipe robots based on screw drive mechanism are very promising in the aspects of pipe inspecting and maintaining. The novel design of an in-pipe robot with differential screw angles is presented for the curved pipes and vertical straight pipes. The robot is mainly composed of the screw drive mechanism, adaptive linkage mechanism, and the elastic arm mechanism. The alternative adjusting abilities of the mobile velocity and traction, and the adaptive steering ability in curved pipes, are achieved by the special designs. A parameter design approach in consideration of the climbing and steering abilities is proposed in detail for the springs and length of the elastic arms. The results are applied to the prototype design of the robot. In several groups of experiments, the proposed robot is competent to pass through curved pipes and vertical straight pipes. The results prove that the proposed mechanism and parameter design approach are both valid.

References

1.
Tur
,
J. M. M.
, and
Garthwaite
,
W.
,
2010
, “
Robotic Devices for Water Main In-Pipe Inspection: A Survey
,”
J. Field Rob.
,
27
(
4
), pp.
491
508
.
2.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2011
, “
A Case Study in Optimization of Gait and Physical Parameters for a Snake-Inspired Robot Based on a Rectilinear Gait
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
014503
.
3.
Khodayari-Rostamabad
,
A.
,
Reilly
,
J. P.
,
Nikolova
,
N. K.
,
Hare
,
J. R.
, and
Pasha
,
S.
,
2009
, “
Machine Learning Techniques for the Analysis of Magnetic Flux Leakage Images in Pipeline Inspection
,”
IEEE Trans. Magn.
,
45
(
8
), pp.
3073
3084
.
4.
Roslin
,
N. S.
,
Anuar
,
A.
,
Jalal
,
M. F. A.
, and
Sahari
,
K. S. M.
,
2012
, “
A Review: Hybrid Locomotion of In-Pipe Inspection Robot
,”
Procedia Eng.
,
41
, pp.
1456
1462
.
5.
Shao
,
L.
,
Wang
,
Y.
,
Guo
,
B.
, and
Chen
,
X.
,
2015
, “
A Review Over State of the Art of In-Pipe Robot
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Beijing, China, Aug. 2–5, pp.
2180
2185
.
6.
Ismail
,
I. N.
,
Anuar
,
A.
,
Sahari
,
K. S. M.
,
Baharuddin
,
Z.
,
Fairuz
,
M.
,
Jalal
,
A.
, and
Saad
,
J. M.
,
2012
, “
Development of In-Pipe Inspection Robot: A Review
,”
IEEE Conference on Sustainable Utilization and Development in Engineering and Technology
(
STUDENT
), Kuala Lumpur, Malaysia, Oct. 6–9, pp.
310
315
.
7.
Chatzigeorgiou
,
D.
,
Youcef-Toumi
,
K.
, and
Ben-Mansour
,
R.
,
2015
, “
MIT Leak Detector: Modeling and Analysis Toward Leak-Observability
,”
IEEE/ASME Transactions on Mechatronics
,
20
(
5
), pp.
2391
2402
.
8.
Lee
,
D.
,
Park
,
J.
,
Hyun
,
D.
,
Yook
,
G. H.
, and
Yang
,
H. S.
,
2012
, “
Novel Mechanisms and Simple Locomotion Strategies for an In-Pipe Robot That Can Inspect Various Pipe Types
,”
Mech. Mach. Theory
,
56
(
1
), pp.
52
68
.
9.
Zhang
,
Y.
, and
Yan
,
G.
,
2007
, “
In-Pipe Inspection Robot With Active Pipe-Diameter Adaptability and Automatic Tractive Force Adjusting
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1618
1631
.
10.
Kakogawa
,
A.
,
Ma
,
S.
, and
Hirose
,
S.
,
2014
, “
An In-Pipe Robot With Underactuated Parallelogram Crawler Modules
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1687
1692
.
11.
Qiao
,
J.
, and
Shang
,
J.
,
2013
, “
Application of Axiomatic Design Method in In-Pipe Robot Design
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
49
57
.
12.
Liu
,
Q.
,
Ren
,
T.
, and
Chen
,
Y.
,
2013
, “
Characteristic Analysis of a Novel In-Pipe Driving Robot
,”
Mechatronics
,
23
(
4
), pp.
419
428
.
13.
Iwashina
,
S.
,
Hayashi
,
I.
,
Iwatsuki
,
N.
, and
Nakamura
,
K.
,
1994
, “
Development of In-Pipe Operation Micro Robots
,”
Fifth International Symposium on Micro Machine and Human Science
(
ISMMHS
), Nagoya, Japan, Oct. 2–4, pp.
41
45
.
14.
Hirose
,
S.
,
Ohno
,
H.
,
Mitsui
,
T.
, and
Suyama
,
K.
,
1999
, “
Design of In-Pipe Inspection Vehicles for φ25, φ50, φ150 Pipes
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Detroit, MI, May 10–15, pp.
2309
2314
.
15.
Li
,
P.
,
Ma
,
S.
,
Li
,
B.
, and
Wang
,
Y.
,
2007
, “
An In-Pipe Inspection Robot Based on Adaptive Mobile Mechanism: Mechanical Design and Basic Experiments
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Diego, CA, Oct. 29–Nov. 2, pp.
2576
2581
.
16.
Li
,
T.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
, and
Wang
,
Y.
,
2014
, “
Control Strategies of Energy Optimization for an In-Pipe Robot With Inclining-Angle-Adjustable Screw Rollers
,”
J. Mech. Eng.
,
50
(
17
), pp.
8
16
.
17.
Liu
,
Q.
,
Li
,
Y.
,
Ren
,
T.
, and
Chen
,
Y.
,
2014
, “
An Active Helical Drive In-Pipe Robot
,”
Robot
,
36
(
6
), pp.
711
718
.
18.
Horodinca
,
M.
,
Doroftei
,
I.
,
Mignon
,
E.
, and
Preumont
,
A.
,
2002
, “
A Simple Architecture for In-Pipe Inspection Robots
,”
International Colloquium on Mobile and Autonomous Systems
, Magdeburg, Germany, June 25–26, pp.
1
4
.http://scmero.ulb.ac.be/Publications/Papers/magdeburg.pdf
19.
Yabe
,
S.
,
Masuta
,
H.
, and
Lim
,
H. O.
,
2012
, “
New In-Pipe Robot Capable of Coping With Various Diameters
,”
12th International Conference on Control, Automation and System
(
ICCAS
), JeJu Island, South Korea, Oct. 17–21, pp.
151
156
.http://ieeexplore.ieee.org/document/6393422/
20.
Kakogawa
,
A.
,
Nishimura
,
T.
, and
Ma
,
S.
,
2013
, “
Development of a Screw Drive In-Pipe Robot for Passing Through Bent and Branch Pipes
,”
44th International Symposium on Robotics
(
ISR
), Seoul, South Korea, Oct. 24–26, pp.
1
6
.
21.
Roh
,
S. G.
, and
Choi
,
H. R.
,
2005
, “
Differential-Drive In-Pipe Robot for Moving Inside Urban Gas Pipelines
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
1
17
.
22.
Li
,
T.
,
Ma
,
S.
,
Li
,
B.
,
Wang
,
M.
, and
Wang
,
Y.
,
2016
, “
Axiomatic Design Method to Design a Screw Drive In-Pipe Robot Passing Through Varied Curved Pipes
,”
Sci. China Technol. Sci.
,
59
(
2
), pp.
191
202
.
You do not currently have access to this content.