Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mechanisms and robotics, the emerging reconfigurable mechanisms and robots pose new challenges in kinematics. One of the challenges is the reconfiguration analysis of multimode mechanisms, which refers to finding all the motion modes and the transition configurations of the multimode mechanisms. Recent advances in mathematics, especially algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the reconfiguration analysis of reconfigurable mechanisms and robots. This paper first presents a method for formulating a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic loop equations of spatial mechanisms is composed of six polynomial equations. Then the reconfiguration analysis of a novel multimode single-degree-of-freedom (1DOF) 7R spatial mechanism is dealt with by solving the set of loop equations using tools from algebraic geometry. It is found that the 7R multimode mechanism has three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Three (or one) R (revolute) joints of the 7R multimode mechanism lose their DOF in its 4R (or 6R) motion modes. Unlike the 7R multimode mechanisms in the literature, the 7R multimode mechanism presented in this paper does not have a 7R mode in which all the seven R joints can move simultaneously.
Skip Nav Destination
Article navigation
October 2017
Research-Article
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
Xianwen Kong
Xianwen Kong
School of Engineering and Physical Sciences,
Heriot-Watt University,
Edinburgh EH14 4AS, UK
e-mail: X.Kong@hw.ac.uk
Heriot-Watt University,
Edinburgh EH14 4AS, UK
e-mail: X.Kong@hw.ac.uk
Search for other works by this author on:
Xianwen Kong
School of Engineering and Physical Sciences,
Heriot-Watt University,
Edinburgh EH14 4AS, UK
e-mail: X.Kong@hw.ac.uk
Heriot-Watt University,
Edinburgh EH14 4AS, UK
e-mail: X.Kong@hw.ac.uk
Manuscript received September 17, 2016; final manuscript received May 28, 2017; published online August 4, 2017. Assoc. Editor: Venkat Krovi.
J. Mechanisms Robotics. Oct 2017, 9(5): 051002 (8 pages)
Published Online: August 4, 2017
Article history
Received:
September 17, 2016
Revised:
May 28, 2017
Citation
Kong, X. (August 4, 2017). "Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions." ASME. J. Mechanisms Robotics. October 2017; 9(5): 051002. https://doi.org/10.1115/1.4037111
Download citation file:
Get Email Alerts
Design and Development of Scissorbot: A Novel Mid-flight-Span-Reducing Quadcopter
J. Mechanisms Robotics
A Combined Strategy for Path Planning of Tensegrity Manipulators Considering Structural Stability
J. Mechanisms Robotics (May 2025)
Safety in Wearable Robotic Exoskeletons: Design, Control, and Testing Guidelines
J. Mechanisms Robotics (May 2025)
The Interior Contact-Aided Rolling Element
J. Mechanisms Robotics (April 2025)
Related Articles
Direct Kinematic Analysis of the Spatial Parallel Mechanism With 3-R(P)S Structure Based on the Point Pair Relationship
J. Mechanisms Robotics (December,2021)
Variable Degree-of-Freedom Spatial Mechanisms Composed of Four Circular Translation Joints
J. Mechanisms Robotics (June,2021)
A Novel Approach in the Direct Kinematics of Stewart Platform Mechanisms with Planar Platforms
J. Mech. Des (January,2006)
The Coupler Surface of the RSRS Mechanism
J. Mechanisms Robotics (February,2016)
Related Proceedings Papers
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Conclusions
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Time-Varying Coefficient Aided MM Scheme
Robot Manipulator Redundancy Resolution