Sleeve pneumatic muscles have shown significant performance improvements over conventional air muscle design, offering increased energy efficiency, force output, and stroke length, while allowing the actuator to become a structural component. However, there remain comparatively few studies involving sleeve muscles, and current applications have not focused on their potential advantages for joints actuated antagonistically with two muscles or their application to a more general class of pneumatic artificial muscle. This research presents a modular sleeve muscle design using the McKibben type construction, with a separate membrane and braid. To further increase stroke length, an internal pulley mechanism is implemented. The performance of the sleeve muscle is compared to an equivalent unaltered muscle and shows substantial improvements in force output, stroke length, and energy efficiency. Further testing shows that the internal pulley mechanism increased the effective stroke length by 82%, albeit at the cost of reduced maximum force output.

References

1.
Vanderborght
,
B.
,
2007
, “
Dynamic Stabilisation of the Biped Lucy Powered by Actuators With Controllable Stiffness
,” Ph.D. thesis, Vrije Universiteit Brussel, Ixelles, Belgium.
2.
Hosoda
,
K.
,
Takuma
,
T.
, and
Nakamoto
,
A.
,
2006
, “
Design and Control of 2D Biped That Can Walk and Run With Pneumatic Artificial Muscles
,”
IEEE
International Conference on Humanoid Robots
, Dec. 4–6, pp.
284
289
.
3.
Luiz
,
J.
, and
Souza
,
A. D.
,
2013
, “
Use of Surface Electromyography to Control an Active Upper Limb Eoskeleton Actuated by Pneumatic Artificial Muscles and Optimised With Genetic Algorithms
,” 22nd International Congress of Mechanical Engineering (
COBEM 2013
), Ribeirao, Brazil, Nov. 3–7.
4.
Knaepen
,
K.
,
Beyl
,
P.
,
Duerinck
,
S.
,
Hagman
,
F.
,
Lefeber
,
D.
, and
Meeusen
,
R.
,
2014
, “
Human Robot Interaction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
6
), pp.
1128
1137
.
5.
Scarfe
,
P.
, and
Lindsay
,
E.
,
2006
, “
Air Muscle Actuated Low Cost Humanoid Hand
,”
Int. J. Adv. Rob. Syst.
,
3
(
1
), pp.
139
146
.
6.
Shadow Robotics
,
2013
, “
Shadow Dexterous Hand Technical Specifications
,”
Shadow Robot Company
, London.
7.
Festo,
2008
, “
Datasheet—DMSP Fluidic Muscle DMSP/MAS
,”
Festo Group
, Hauppage, NY.
8.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
, and
Caldwell
,
E.
,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
9.
Mao
,
Y.
,
Wang
,
J.
,
Li
,
S.
, and
Han
,
Z.
,
2006
, “
Energy-Efficient Control of Pneumatic Muscle Actuated Biped Robot Joints
,”
6th World Congress on Intelligent Control and Automation
, June 21–23, pp.
8881
8885
.
10.
Caldwell
,
D.
,
Razak
,
A.
, and
Goodwin
,
M.
,
1993
, “
Braided Pneumatic Muscle Actuators
,”
IFAC Conference on Intelligent Autonomous Vehicles
, pp.
507
512
.
11.
Hannaford
,
B.
, and
Winters
,
J.
,
1990
, “
Actuator Properties and Movement Control: Biological and Technological Models
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
Springer-Verlag
,
New York
, pp.
101
120
.
12.
Isermann
,
R.
, and
Raab
,
U.
,
1993
, “
Intelligent Actuators-Ways to Autonomous Actuating Systems
,”
Automatica
,
29
(
5
), pp.
1315
1331
.
13.
Colbrunn
,
R.
,
2000
, “
Design and Control of a Robotic Leg With Braided Pneumatic Actuators
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
14.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.
15.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1994
, “
Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles
,”
IEEE
International Conference on Robotics and Automation
, May 8–13, Vol.
3
, pp.
281
286
.
16.
Daerden
,
F.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2002
, “
Pneumatic Artificial Muscles: Actuators for Robotics and Automation
,”
Eur. J. Mech. Environ. Eng.
,
47
(
1
), p.
1121
.
17.
Meller
,
M. A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2014
, “
Reconsidering the McKibben Muscle: Energetics, Operating Fluid, and Bladder Material
,”
J. Intell. Mater. Syst. Struct.
,
25
(
18
), pp.
2276
2293
.
18.
Tavakoli
,
M.
,
Marques
,
L.
, and
De Almeida
,
A. T.
,
2008
, “
A Comparison Study on Pneumatic Muscles and Electrical Motors
,”
IEEE International Conference on Robotics and Biomimetics
,
ROBIO 2008
, Feb. 22–25, pp.
1590
1594
.
19.
Kang
,
B. S.
,
2014
, “
Compliance Characteristic and Force Control of Antagonistic Actuation by Pneumatic Artificial Muscles
,”
Meccanica
,
49
(
3
), pp.
565
574
.
20.
Villegas
,
D.
,
Van Damme
,
M.
,
Vanderborght
,
B.
,
Beyl
,
P.
, and
Lefeber
,
D.
,
2012
, “
ThirdGeneration Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison With McKibben Muscle
,”
Adv. Rob.
,
26
(
11–12
), pp.
1205
1227
.
21.
Waycaster
,
G.
,
Wu
,
S.-K.
,
Driver
,
T.
, and
Shen
,
X.
,
2011
, “
Design and Control of a Compact and Flexible Pneumatic Artificial Muscle Actuation System—Part I: Design Process
,”
ASME
Paper No. DSCC2011-6067.
22.
Shin
,
D.
,
Yeh
,
X.
, and
Khatib
,
O.
,
2013
, “
Circular Pulley Versus Variable Radius Pulley: Optimal Design Methodologies and Dynamic Characteristics Analysis
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
766
774
.
23.
Beyl
,
P.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2009
, “
Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
229
243
.
24.
Davis
,
S.
,
Canderle
,
J.
,
Artrit
,
P.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2002
, “
Enhanced Dynamic Performance in Pneumatic Muscle Actuators
,”
IEEE
International Conference on Robotics and Automation
, May 11–15, pp.
2836
2841
.
25.
Driver
,
T.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator: Concept and Prototype Demonstration
,”
J. Bionic Eng.
,
10
(
2
), pp.
222
230
.
26.
Driver
,
T. A.
, and
Shen
,
X.
,
2014
, “
Design and Control of a Sleeve Muscle-Actuated Robotic Elbow
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041023
.
27.
Zheng
,
H.
, and
Shen
,
X.
,
2013
, “
Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems
,”
Actuators
,
2
(
4
), pp.
129
144
.
28.
Zheng
,
H.
, and
Shen
,
X.
,
2013
, “
Sleeve Muscle Actuator and Its Application in Transtibial Prostheses
,”
IEEE
International Conference on Rehabilitation Robotics
, June 24–26, pp.
3
7
.
29.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Automation
,
12
(
1
), pp.
90
102
.
30.
McGinn
,
C.
,
2015
, “
Towards the Development of a Novel Electro-Pneumatic Hybrid Robot Morphology
,” Ph.D. thesis, University of Dublin, Trinity College, Dublin, Ireland.
31.
Colbrunn
,
R.
,
Nelson
,
G.
, and
Quinn
,
R.
,
2001
, “
Design and Control of a Robotic Leg With Braided Pneumatic Actuators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems, Expanding the Societal Role of Robotics in the Next Millennium
, Oct. 29–Nov. 3, Vol.
2
, Cat. No.01CH37180.
32.
Shin
,
D.
,
Seitz
,
F.
,
Khatib
,
O.
, and
Cutkosky
,
M.
,
2010
, “
Analysis of Torque Capacities in Hybrid Actuation for Human-Friendly Robot Design
,”
IEEE
International Conference on Robotics and Automation
, May 3–7, pp.
799
804
.
33.
Murillo
,
J.
,
2013
, “
Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses
,” Ph.D. thesis,
University of Ottawa
,
Ottawa, ON, Canada
.
34.
Venair
,
2015
, “
Technical Datasheet—Vena Technoex
,” Venair, Report No. DO 03.10 FT 87. Rev. 09.
35.
Honeywell
,
2014
, “
TruStability Board Mount Pressure Sensors HSC SeriesHigh Accuracy, Compensated/Amplified
,” Report No. 50099148-A-EN IL50.
36.
Mortier
,
K.
,
2014
, “
Braided Pneumatic Muscles for Rehabilitation Apparatus Karsten Mortier
,”
Ph.D. thesis
, Universiteit Gent, Ghent, Belgium.
You do not currently have access to this content.