Abstract
This paper presents the design and integration of a genderless coupling mechanism for modular self-reconfigurable mobile robots. Modular self-reconfigurable mobile robotic systems consist of a number of self-sufficient modules that interconnect via coupling mechanisms and adopt different configurations to modify locomotion and/or manipulation capabilities. Coupling mechanisms are a critical element of these robotic systems. This paper focuses on a docking mechanism called GHEFT: a Genderless, High-strength, Efficient, Fail-safe, and high misalignment Tolerant coupling mechanism that aids self-reconfiguration. GHEFT provides a high strength and energy efficient connection using nonback drivable actuation with optimized clamping profiles that tolerate translational and angular misalignments. It also enables engagement/disengagement without gender restrictions in the presence of one-sided malfunction. The detailed design of the proposed mechanism is presented, including optimization of the clamping profile geometries. Experimental validation of misalignment tolerances and achievable clamping forces and torques is performed to demonstrate the strength, efficiency, and fail-safe capabilities of the proposed mechanism, and these results are compared to reported results of some of the existing coupling mechanisms.