This paper proposes a design method to obtain a family of rigidly foldable structures with one degree-of-freedom (DOF). The mechanism of flat-foldable degree-four cones and mutually compatible cones sharing a boundary is interpreted as the mechanism of Bricard's flexible octahedra. By sequentially concatenating compatible cones, one can design horn-shaped rigid-origami mechanisms. This paper presents a method to inversely obtain rigidly foldable horns that follow given space curves. The resulting rigidly foldable horns can be used as building blocks for a transformable cellular structure and attachments to existing rigidly foldable structures.
Issue Section:
Research Papers
References
1.
Miura
, K.
, 1970
, “Proposition of Pseudo-Cylindrical Concave Polyhedral Shells
,” IASS Symposium on Folded Plates and Prismatic Structures
, Vienna
, Austria
, Sept. 28–Oct. 2.2.
Resch
, R. D.
, and Christiansen
, H.
, 1970
, “The Design and Analysis of Kinematic Folded Plate Systems
,” IASS Symposium on Folded Plates and Prismatic Structures
, Vienna, Austria, Sept. 28–Oct. 2.3.
Balkcom
, D.
, 2002
, “Robotic Origami Folding
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.4.
Tachi
, T.
, 2009
, “Simulation of Rigid Origami
,” Origami4: The Fourth International Conference on Origami in Science, Mathematics, and Education
, R. Lang, ed., A. K. Peters, Natick, MA, pp. 175
–187
.5.
Huffman
, D.
, 1976
, “Curvature and Creases: A Primer on Paper
,” IEEE Trans. Comput.
, C-25
(10
), pp. 1010
–1019
.6.
Hull
, T.
, 2006
, Project Origami
, A. K. Peters
, Natrick, MA
.7.
Tachi
, T.
, 2010
, “Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,” Advances in Architectural Geometry 2010
, Springer
, Vienna, Austria
, pp. 87
–102
.8.
Tachi
, T.
, 2009
, “One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels
,” IASS Symposium 2009
, Valencia, Spain, Sept. 28–Oct. 2, pp. 2295
–2306
.9.
Schenk
, M.
, and Guest
, S. D.
, 2013
, “Geometry of Miura-Folded Meta-Materials
,” Proc. Natl. Acad. Sci.
, 110
(9
), pp. 3276
–3281
.10.
Tachi
, T.
, and Miura
, K.
, 2012
, “Rigid-Foldable Cylinders and Cells
,” J. Int. Assoc. Shell Spat. Struct.
, 53
(4
), pp. 217
–226
.11.
Cheung
, K.
, Tachi
, T.
, Calisch
, S.
, and Miura
, K.
, 2014
, “Origami Interleaved Tube Cellular Materials
,” Smart Mater. Struct.
, 23
(9
), p. 094012
.12.
Bricard
, R.
, 1897
, “Mémoire sur la théorie de l'octaèdre articulé
,” J. Math. Pures Apple
, 5
(3
), pp. 113
–150
.13.
Nelson
, G. D.
, 2010
, “Extending Bricard Octahedra
,” e-print arXiv:1011.5193
.14.
Lang
, R. J.
, Magleby
, S.
, and Howell
, L.
, 2015
, “Single-Degree-of-Freedom Rigidly Foldable Origami Flashers
,” ASME Paper No. DETC2015-46961.15.
Tachi
, T.
, 2011
, “One-DOF Rigid Foldable Structures From Space Curves
,” IABSE-IASS Symposium 2011
, London, Sept. 20–23.16.
Connelly
, R.
, Sabitov
, I.
, and Walz
, A.
, 1997
, “The Bellows Conjecture
,” Contrib. Algebra Geom.
, 38
(1
), pp. 1
–10
.17.
Connelly
, R.
, 1977
, “A Counterexample to the Rigidity Conjecture for Polyhedra
,” Publ. Math. Inst. Hautes Étud. Sci.
, 47
(1
), pp. 333
–338
.18.
Schenk
, M.
, and Guest
, S. D.
, 2010
, “Origami Folding: A Structural Engineering Approach
,” Origami5, 5th International Meeting on Origami in Science, Mathematics and Education
, Singapore, July 13–17, pp. 293
–305
.Copyright © 2016 by ASME
You do not currently have access to this content.