In this paper, an intuitive approach for the mobility analysis of deployable mechanisms involved in a special screw system with two coplanar twist vectors is proposed. First, the coplanar screw system with a pair of parallel/concurrent zero pitch screws is analyzed, and the intuitive allowable mobility set for the screw system is described. Next, kinematic chains containing the coplanar screw system are enumerated. The proposed approach is used to explain the mobility of the deployable Bennett mechanism, Myard mechanism, and Bricard mechanism; some novel deployable mechanisms could be found based on the analysis. Furthermore, it is shown that the proposed approach can be applied to the mobility analysis of multiloop deployable mechanisms and is found to be more intuitive than the traditional approach, which provides a straightforward insight into the mobility of complicated mechanisms.

References

1.
Puiga
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
Review: A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.
2.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
,
Boston, MA
.
3.
Zhao
,
J.
,
Wang
,
J.
,
Chu
,
F.
,
Feng
,
Z.
, and
Dai
,
J.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory
,
46
(
7
), pp.
998
1015
.
4.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kisisel
,
A. U. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
.
5.
Faist
,
K. A.
, and
Wiens
,
G. J.
,
2010
, “
Parametric Study on the Use of Hoberman Mechanisms for Reconfigurable Antenna and Solar Arrays
,”
IEEE International Conference on Aerospace
(
AERO
), Big Sky, MT, Mar. 6–13.
6.
Wohlhart
,
K.
,
2004
, “
Polyhedral Zig-Zag Linkages
,”
9th International Symposium on Advances in Robot Kinematics
(ARK 2004), Sestri Levante, Italy, June 28–July 1, pp.
351
360
.
7.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Molfino
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory
,
73
, pp.
130
153
.
8.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
9.
Myard
,
F. E.
,
1931
, “
Contribution à la Géométrie des Systèmes Articulés
,”
Soc. Math. Fr.
,
59
, pp.
183
210
.
10.
Bricard
,
R.
,
1927
,
Lecons de Cinématique, Tome II Cinématique Appliquée
,
Gauthier-Villars
,
Paris, France
, pp.
7
12
.
11.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanism
,” Ph.D. dissertation, University of Oxford, Oxford, UK.
12.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Robot.
,
3
(
3
), p.
031006
.
13.
Huang
,
H.
,
Deng
,
Z.
, and
Li
,
B.
,
2012
, “
Mobile Assemblies of Large Deployable Mechanisms
,”
JSME J. Space Eng.
,
5
(
1
), pp.
1
14
.
14.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multi-Loop Deployable Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111002
.
15.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
.
16.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.
17.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
18.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111006
.
19.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R. J.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111009
.
20.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
21.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
22.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, MA
.
23.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
24.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
8
), pp.
719
730
.
25.
Zhao
,
J.
,
Li
,
B.
,
Yang
,
X.
, and
Yu
,
H.
,
2009
, “
Geometrical Method to Determine the Reciprocal Screws and Applications to Parallel Manipulators
,”
Robotica
,
27
(
6
), pp.
929
940
.
26.
Bennett
,
G. T.
,
1914
, “
The Skew Isogram Mechanism
,”
Proc. London Math. Soc.
,
s2–13
(
1
), pp.
151
173
.
27.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and Its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052301
.
You do not currently have access to this content.